
Penalty Policies in Professional Software Development
Practice: A Multi-Method Field Study
Yi Wang

Department of Information Systems
City University of Hong Kong

Tat Chee Avenue 83#, Kowloon, Hong Kong

ywang1@acm.org

Min Zhang
Japan Advanced Institute of Science and Technology

923-1211, No. 1 Building 1-109
1-8 Asahidai, Nomi, Ishikawa

zhangmin@jaist.ac.jp

ABSTRACT
Organizational Punishment/Penalty is a pervasive phenomenon in
many professional organizations. In some software development
organizations, punishment measures have been adopted in an
attempt to improve software developers’ performance, reduce the
software defects, and hence ensure software quality. It is unclear
whether these measures are effective. This article presents the
results of a multi-method field study that analyzes software
engineers’ perception towards penalty policies in relation to
software quality in a software development process. The results
were generated via both qualitative and quantitative methods.
Through interviews, we collected the individuals’ perception
towards the penalty policy. By extracting data in a software
configuration management system, we identified several patterns
of defects change. We found that while a penalty mechanism does
help to reduce software defects in daily coding activity, it fails in
achieving programmers’ maximum work potential. Meanwhile,
experienced software programmers require less time to adapt to
penalty policies and benefit from exist of less experienced
developers. Some additional findings and implications are also
discussed.�

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management - Programming
Teams, Productivity.

K.6.1 [Management of Computing and Information Systems]:
Project and People Management – staffing, system development.

General Terms
Management, Human Factors, Measurement.

Keywords
Penalty Policies, Software Defects, Perception and Performance
of Software Developers.

1. INTRODUCTION
Software systems play an increasingly significant role in our lives.
Unfortunately, software systems often fail to deliver as promised
due to the existence of flaws and defects. Unidentified errors
remain in many software systems in use today. Some software
defects have received much attention, for example, South Korea’s
first rocket launch problem in Aug. 2009 [1], which reduced the
availability of many important services. With the increase of
software systems’ complexity and the use of modern rapid
development methodologies, avoiding, finding, and fixing
software defects become even more difficult.

Many studies exist that focus on predicting, detecting, tracking
and fixing techniques. Many existing software defect related
techniques not only suffer from some kind of theoretical or
methodological deficiency [13], but also ignore human and
organizational factors in software development practice.
Professional software development practice is a human-centered
activity and largely is a social-technical process [10]. Software is
created, maintained and used by human beings rather than
machines. Organizational factors also influence quality of
software systems significantly. Conway’s law stating “Any
organization that designs a system will inevitably produce a
design whose structure is a copy of the organization’s
communication structure.” reflects this point. Other empirical
studies such as [16] also discuss the duality between product and
organizational environment.

From an organizational or team perspective, what can help a
software development organization avoid the occurrence of the
software defects or identify defects as early as possible? This is a
fundamental question that needs serious investigation. In this
article, we enhance our understanding on this general area by
focusing on organizational punishment. Punishment/penalty has
been well examined but still has many different controversial
opinions [e.g., 8, 9, and 22]. However, in software engineering
domain, there is no formal literature that addresses this
phenomenon. To bridge this research gap, we designed a study
trying to empirically examine how organizational punishment or
penalty works under the setting of real software development
organizations and whether it helps to improve the performance of
professional software developers (through reducing the software
defects produced in daily coding practice).

Thus, we ask following research questions:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE '10, May 2-8, 2010, Cape Town, South Africa
Copyright © 2010 ACM 978-1-60558-719-6/10/05 ... $10.00

39

����� ����� ���� ���� 	
������� ����
���	��
��������
�	� �
���	� �������� �
�����	�� �
��
�
��������������
�	�������������������

����� �
�	� �������� �
�����	� ����� �
� ������ ����
	
������� �����	� ���� �
� ����
��� 	
�������
��������	�� ����
�������� �
� ���	
����
����������	���	� ������� ���������� � ���������� ����
�����������		�����������	�
���
�����������
�����	�
�
�!��

This article reports on a field study of punishment/penalty in two
online, multiplayer game development teams through a
combination of qualitative research and quantitative research.
This research goes beyond traditional face-to-face interviews by
extracting useful information from the electronic repositories
associated with the respective software development projects.
This combination removes the common method bias of a single
research method and brings more confidence in the completeness
and soundness of our findings.

The rest of this article is organized as follows. Section 2 presents
theoretical backgrounds of this research together with a brief
introduction of related work. Section 4 states the major research
settings. Section 5 discusses the methodology adopted in data
collection and analysis. Section 6 summarized the major findings.
Section 7 discusses some accidental findings, implications and
limitations of this study. Section 8 concludes the article.

2. THEORITICAL BACKGROUNDS AND
RELATED WORK

2.1 Organizational Punishment from Justice
Perspective
There are many controversial opinions on the punishment towards
employees. Conventional managerial wisdom often claims that
punishments/penalty may lower employee morale, create negative
influences to their performance, and influence the atmosphere of
workplace resulting in side effects that outweigh any benefits [14].
Some studies report contradicting results that is some punishment
can actually result in positive outcomes [3]. From an economics
perspective, Sigmund et al suggest that punishing works much
better than reward in promoting cooperative behaviors in a team
context [6, 21].

In almost all studies that report positive effect of organizational
punishment, “Fairness Heuristic” (or “Justice Heuristic” in some
literatures) is the fundamental attribute of the positive outcome. In
[4, 5, and 22], they proved the possibility that some positive
organizational effects would be generated if the introduced
punishment/penalty mechanism is fair “enough” because the
punishment/penalty mechanism is easily accepted by the
employees.

Another important topic in organization punishment studies is the
third person effect, which refers to the observation that punishing
one individual in a team will also influence other people’s
behaviors. This phenomenon is well described by a traditional
Chinese proverb: “Punish a chicken as a warning to monkeys.”

2.2 Human’s Self Motivation on Threats to
Punishment
Human beings incline to avoid potential punishment. In Deci’s
[12] highly-cited paper, he claimed the threats of punishment for
poor performance would extrinsically motivate individuals to
improve their performance although it would also lead to some
decrease in people’s intrinsic motivations. In [11], it is further
pointed out that the use of promised rewards or threatened
punishment is a ubiquitous motivational strategy, especially for
the uninteresting tasks. In [18], McGregor et al point out that
punishments commonly help to motivate employees usually with
management by direction and control. As an important aspect in
human management, performance management also addresses the
usefulness of punishment in improving professional employees
work performance. Empirical studies n software engineering [20]
have demonstrated that fear of punishment is an important
motivating factor for developer’s behaviors.

2.3 Punishment in Software Development
In Information Technology (IT)-intensive, task-oriented teams,
punishment is also an important factor that influences team
productivity significantly. In [24], they presented punishment as
an important dimension of the task pressure, which will influence
their subjects’ group performance. In [15], having a clear standard
for reward and punishment is an essential part of systematic
management control for software development team. Patton and
Jayaswal [19] also claimed that proper reward/punishment system
will help to build trustworthy software systems.
Our work is different from previous studies in two aspects: (1) we
provide case studies in a real software development environment
rather than discuss without empirical evidence as support, and (2)
we employ both qualitative and quantitative methods in our case
studies.

3. CONCEPTUAL FRAMEWORK AND
PROPOSITIONS FOR OUR CASE STUDIES
To frame our studies, we make use of a three-element conceptual
model depicted in figure 1, which is based on the major research
questions. The three elements are: (1) punishment/penalty policy,
(2) perception of software development engineers (SDEs), and (3)
influence to program quality. Each element contains sub-elements.
This framework is proposed under the rationale that
punishment/penalty policy will have significant impact on the
perception of SDEs, hence alter their on-job behaviors, and
introduce influence to the program quality.

Figure 1. The Conceptual Framework.

40

Based on above theoretical backgrounds mentioned in section 2
and empirical research results, we hypothesize:�

Proposition 1. (“Justice Penalty Works”) The justice penalty
mechanism will help to reduce software defects positively.

Proposition 2. (“Fairness Is the Most Important Thing”) For
software developers, they are concerned about the fairness of
the penalty policies. In particular, the penalty policy should
avoid being perceived as a measure to reduce a developers’
income.

Proposition 3. (“Third Person Effect”) If somebody in the team
were punished, others’ concerns would increase; and their code
quality would also have some improvements.

Proposition 4. (“Warm up Period is Necessary”) The warm up
period will help the software developers better adjust to penalty
policies.

In addition, considering the complexities of software development,
experience may also influence software developers’ capability;
hence, we have the following additional propositions:
Propositions 5. (“Experience Helps”) The experienced software

developers will need less time to adjust themselves in adapting
to penalty policies��

Furthermore, it is natural to ask whether the penalty policies
would cause a significant increase of software developers’
workload. For example, with the existence of penalty policies,
software developers tend to spend more time on testing and
debugging, it seems their workload may increase. However, exist
software engineering research results conclude that, finding and
fixing software defects earlier saves more effort than fixing them
in later development and maintenance phases.

Propositions 6. (“No Extra Workload”) Software engineers will
not experience significant workload increase after introducing
penalty policies.

4. ORGANIZATIONAL SETTINGS

4.1 Alpha and Its Game Development
Department
This research was conducted in the multiplayer, online game
development department of a China major online entertainment
provider Alpha1. Alpha is one of the top 3 multiplayer, online
game service providers in mainland China market. The number of
concurrent online users often exceeds 10,000,000 at its peak
(often between 9:00pm and 01:00 am in GMT +8:00).
The games running on Alpha’s platforms are from two sources.
Some are developed by the third-party game designers, e.g.,
Softstar, EA sports, while others are developed by Alpha’s
internal development department. Alpha’s internal development
department has over 1000 full-time software engineers focusing
on multiplayer, online game development. In the rest of this
article, we use “Beta” to refer this internal department.

1 For privacy consideration, we use Alpha, Beta and Omega to

mention the real name of the subjected company, department
and team.�

In Beta, software engineers are organized into development teams
according to different products. A typical team contains around 10
developers. In addition, there are other kinds of teams focused on
product quality assurance, which consist primarily of the testing
specialists and quality assurance engineers. These quality
assurance teams are independent to development teams under
different working process.

4.2 Workflow of Development Team
In daily development practice, software engineers are assigned a
small piece of development task, e.g., writing a program to find
players physical location or assigning game equipment to players
randomly. For each finished task, source code must be submitted
through the software configuration management (SCM) tool (In
Alpha, Rational ClearCase is the major SCM tool). Only the
program manager (PM) and senior SDE have permission to create
an entry in the Rational ClearCase2 for each assigned task.
The developers are asked to conduct unit test on their code before
submission. After their own testing, the quality assurance team
(independent to the development team) will examine the code, if
there are some defects, or some other problems in the code (e.g.,
incomplete documentation, bad coding style, etc), and will send a
report back to the code author through the SCM system for
revisions until the submission is accepted. If submitted code can
not pass the quality assurance examination before a pre-set
submission deadline, it is recorded as a fail submission. This
process is managed and monitored by the Rational development
platform.

4.3 Detailed Penalty Policy
The penalty policy was launched in Sep. 2008. In the first two
weeks, the PM only recorded unsuccessful submissions but not
enforce the monetary fines. The real punishment mechanism
started after the China’s National Day vocation.
Followings are the penalty rules implemented by Beta:

1: If a programmer has twois tracked twice unsuccessful
submissions in a week, this programmer will be fined CNY100
(around $14.70).
2: For each unsuccessful submissions beyond the initial tow
unsuccessful submissions in a single week, the programmer will
be finned and additional 100 RMB. 3: The maxim penalty is
CNY800 (around $120) per month for each individual and
CNY3000 (around $450) for the whole team in a financial
month.
4: The money collected through penalty will be used for team
activities, every team member has right to monitor the use of
collected penalty sum.

5. Penalized persons will remain anonymous. If some person is
penalized, other members only know that someone has been
penalized (via email), but not who is penalized.

Besides rules stated above, Beta also provided a “match” fund for
team activities. For example, if team Omega collected CNY1000

2 Rational ClearCase:
http://www.ibm.com/software/awdtools/clearcase.

41

penal sum, Beta will provide equal sum of money to team Omega
for their team activities.
Obviously, the penalty mechanism adopted in Beta is impartial.
The penalty decision is totally based on the evaluations executed
by the independent third party.

4.4 The Implementation Process of the
Penalty Policy
The penalty policy started from 15/09/2008. From 15/09/2008,
two weeks were selected as the “Warm-Up” period to make
software engineers familiar with the penalty policy. During this 2-
week “warm-up period”, if a project manager found one of his/her
subordinate should be fined; he or she would issue a “bill” via
email. However, people who received a “bill” did not need to pay.
The real penalty policy started at 08/10/2008 after 7-days national
day vocation (01/10/2008-07/10/2008). Till we wrote this paper,
this penalty policy was still working in Beta.

5. METHODOLOGY
We combined qualitative and quantitative research method in this
research to achieve both acceptable depth and breadth. As far as
our current knowledge, there is no established theory or empirical
analysis that addressed the organizational punishment/penalty in
professional software development process. That is, we were in
lack of conceptual frameworks to guide the research efforts in this
field. Besides, we were not sure whether the existing research on
organizational punishment could be directly applied to under the
unique setting of software development. Meanwhile, there are also
no other benchmarks for us to follow and compare. Based on
these reasons, we first used qualitative methods to get an
intuitional understanding of our findings, and then, verified
some of them quantitatively. This multi-methodology ensures the
reliability of this research.

5.1 Qualitative Methods
During our field study in Beta, the researchers conducted a series
of semi-controlled face-to-face interviews with the software
developers in two teams. 10 persons were selected as interviewees.

�������	

����������������
��������

	������

As part of whole study, we developed a story telling approach to
collect software developers’ individual perceptions towards
penalty policies. The story telling approach was adopted as an
integrated part of whole interview process. The interviewees were
asked to freely tell their personal stories at the beginning of each
interview. The following interview questions were based on their
narratives.
However, qualitative method cannot provide comprehensive and
reliable answers to both research questions, especially RQ2. To
gain better understanding on the relationships between the penalty
mechanism and software engineers’ performance, we also
conducted quantitative analysis based on data extracted from
Beta’s software configuration system.

5.2 Quantitative Methods
To further verify the findings that emerged from the interviews
and field studies, the researchers used information stored in
corresponding software configuration management (SCM)

systems. As we mentioned before, Beta used IBM Rational
ClearCase as it major SCM tool, therefore, we retrieved data in
ClearCase to get the required information. According to Beta’s
policy, each submission’s information was kept in SCM system
until the close of the software product line. For each submission
made by the software engineer, we examined the reports from the
quality assurance team. In these reports, software defects found by
QC team were recorded.
We selected the first 4 months (form 09/2008 to 12/2008, we
collected information in 09/2008 as the benchmark for
comparison) log records. This is due to two reasons. In the first
place, to fulfill the information disclosure policy of Alpha, we
could not retrieve the working data from the last 6 months.
Secondly, considering that the software developers became
familiar with the penalty policy, the influence of penalty policies
become stable and well understood. Another consideration was
that there were no new programmers added to the study teams
during this period, which provided some convenience to our study.
After we retrieved the needed information from ClearCase system,
we examined and recoded it to make it more suitable for statistical
analysis. After the data re-codification, we secured 21 cases of
software developers’ data in 82 working days.
For each data case, variables about personal and work information
were extracted. Five variables were introduced as follows.

5.2.1 Personal Information
1. Education Level
The education levels were coded into three categories: “non-
university level education”, “university level education” and
“postgraduate level”.

2. Experience
We categorized all subjected software engineers into two groups:
experienced and novice developer. If the developer had less than
one year development experience (till 09/2008), we treated them
as novices. In fact, most novice developers had less than 2 months
full-time development experience3.

3. Gender
In our study, male was coded as “1”, while female was coded as
“0”. This information was collected to verify whether gender
influence the pattern of software engineers’ work performance.

5.2.2 Recorded Work History
For each day’s work history, we extracted two kinds of
information.�

4. Number of Detected Defects (NDD)
For each studied software developers, we extracted the sum of the
defects found by the quality assurance team each day. Through
collecting this data, we could build patterns for the change of
defects from both individual and group perspective. This can also
be used to verify other propositions we proposed.

3 This is not just a coincidence. Alpha hires many new fresh

campus graduates in 2008 to fulfill the need of its repaid
expansion, their appointments usually started at July, 2008.

42

5. Time Stamp for Each Penalty (PTM)
The time stamp of each penalty was selected as a variable.
According to our data set, there were 31 penalties that occurred
during the survey period. The granularity for each time stamp was
day. This variable was mainly used to test the 3rd person effect.
Besides the information mentioned above, we also collected some
additional data. Obviously, the collected data is longitudinal data.
The major focus of this study was determining a pattern of the
software quality change attributable to the penalty policy. Curve
estimation [2] approach is quite suitable for this study. Many
curve estimation methods have been increasingly used in
sociology and anthropology research but not widely adopted in
empirical software engineering research domain. Given the small
size of data cases in this study, we adopted the simple several
curve estimation models (i.e., quadratic, cubic, growth, etc). This
technique can capture patterns and discover causes of variability
in patterns at the same time, making it a suitable tool for
researchers who are interested in identifying the antecedents of
certain outcomes at a given time point, as well as the determinants
of changes in patterns over time. Through using a set of repeated
observed measures, it can help researchers identify the pattern of
changes over time. SPSS16’s integrated curve estimation tool was
adopted to check whether there are some patterns we wanted. We
also conducted some regression check after we got preliminary
result and binding different models for different phases.
In this study, we focused on the change patterns of the number of
detected defects. Through study the change patterns of different
employee groups, we hoped to verify the proposed propositions,
together with any possible meaningful findings.

5.3 Demographics
The study was conducted in two development teams. The first
team has 13 members while the second one has 14 members. In
each team, there were some individuals who served as project
managers and team support staff. The total number of code
contributors was 21. All of them had college level or above
education, 7 obtained post-graduate degree or equivalent
advanced degrees. According to the criteria set for experience, 12
were experienced while 9 were novice developers. The average
experience was 1.59 years, with the standard deviation of 1.84.
The two teams mainly consisted of young men less than 35 years
old (18 males, 3 females).�

6. FINDINGS
6.1 Software Engineers’ Perceptions
6.1.1 Changes of Overall Concerns
According to collected interview results, we found surveyed
interviewees concerns towards the penalty policy decreased as
time went on. In first month of penalty policy introduction, people
paid excessive attention to penalty issues. As a software engineer
reported: “In the first several weeks, I and my colleagues were all
quite worried about this. It was the hottest topic in our lunch
discussions. But this over reaction did not last long. After several
weeks, we only talked it when we informed there was some person
was fined.” He further illustrated the reason what contributed to
such a change, “Compared with our salary, the penalty is not
much; one person could be fined at most CNY800 in a month, less
than 10%, so we do not need to care too much. Besides, we just

need to pay small amount extra attentions in writing code to
avoid most fail submissions!”
The decrease of concerns is also due to software engineers finally
finding that it is not quite difficult to avoid penalty. Another
interviewee pointed out: “Most problems were not caused by
technical difficulties, but our carelessness. If we pay a little bit
more attention, they can be avoided.”
There were several persons who showed more concerns than
others. However, these are mainly results from their individual
characteristics but not the penalty policy itself.

6.1.2 If Penalty is Fair, It Is OK
Most of employees admitted that they could only accept a fair
punishment/penalty policy that does not intend to treat some staff
differently. In this case, penalty policies based on the third party’s
(Quality Assurance Team) report are no doubt a fair penalty.
In fact, fairness is not only important in penalty design, but also
essential in nearly every aspect in organization setting [17]. It is
essential not only for punishment/penalty policy design, but also
for staff evaluation and reward system design.

6.1.3 Upper Penalty Limit is Necessary
Besides fairness issue, setting upper penalty limit is necessary in
avoiding upsetting employees’. According to most interviewees,
this policy ensures their basic salary was not to be influenced
significantly by the penalty policy. As an interviewee commented,
“once I know there was an upper limit, I felt a little bit better. If
no such limit, I think most of us would strike for protest.”

6.1.4 No Significant Workload Increase Reported
As we predicted in proposition 5, introducing penalty policies did
not cause significant increase on workload. An interesting
phenomenon like this follows. When we asked questions about
“workload”, the interviewees typically said “I need to conduct
more testing and debugging, pay extra attentions in writing code.
But, I spend less time in revising my programs after submitting it
to the system.” Obviously, increased effort on testing can be
compensated by less later efforts on further program revision and
maintenance.

6.1.5 Increased Team Cohesion
Conventional opinions often declare that punishment/penalty
would damage the team atmosphere. However, our study provided
conflicted results. It is natural to ask the reasons for this. Based on
the interviews, the most plausible explanation is the use of
collected penalty sum. According to the penalty rules, collected
money (together with the match fund provide by Beta) would be
used for team activities. Obviously, regular team activities help to
increase team cohesion. The interviewees’ feedbacks also reflect
the team activities make them know other members better.

6.2 Software Engineers’ Performance
In this sub-section, we will discuss the major findings based the
quantitative results. We first attempted to compute the overall
change pattern of the total found software defects. Based on the
collected data, we get two curves to describe the change patterns
of number of defects (per day) produced by the novice and
experienced developers respectively. Figure 2 shows the detailed
information.

43

�

Figure 2. The Estimated Curve for Two Group of Developers
(Novice and Experienced).

6.2.1 Penalty Works, But Not so Significant as
Expected
In the first place, both two curves show that significant decrease
trend of the number of detected defects per day. However, we can
find an interesting “U” shape for both curves. So, what is the
meaning of the “U” shape pattern?
This question is really simple. The “U” shape pattern indicates
that this penalty policy fails to utilize the maximal potential of the
developers. For developers, they first tried their best to avoid
being fined. However, after a short period, they found they did not
need to pay so many efforts to avoid being penalized. Therefore,
the defects number began to increase until stable. Therefore, the
policy makers’ may be disappointed for the failure of utilizing
developers’ greatest potential. However, the penalty policies did
successfully reduce the number of detected defects significantly.

6.2.2 Warm-Up Period Is Not Very Useful
This finding contradicts to the proposition 4 we presented in
section 3. Leaving a short period for warming up is a common
managerial practice when introducing new policy. However, our
result show this period is useless, especially for experienced
programmers. This may result the fact that the “mock” penalty
will not draw enough developer’s attention. To verify this point,
further studies are needed.

6.2.3 Third-Person Effects
As we mentioned before, we collected time stamps for each
penalty. To verify whether of the Third-Person effects exist, we
conducted following computation to recode data:
� Step 1: Count the sum of all reported defects (except the

defects produced by the fined person) in the day when
somebody was fined,

� Step 2: Count the sum of all reported defects (except the
defects produced by the penalized individual) the day
immediately after the day somebody was fined,

� Step 3: Add another category variable to differentiate these
two groups of data.

For the 31 cases of penalty execution during the observation
period, we get another 62 pairs of data. Then we used ANOVA
test to find whether there are significant difference. The results are
(F: 41.462, P-Value: .000).

6.2.4 Experience Helps
We could admit that experienced software developers used less
time to adjust themselves to the new policy. From figure 2, we can
find experienced software developer’s quality assurance failure
curve achieved stability quicker than the novice developers.
We computed the time before the quality assurance failure curve
becomes stable for each case, recorded them, and then conducted
one-way ANOVA test to verify this point, which also indicates
significant short adaptation period for experienced developers.
The tails of these two curves suggest that experienced developers
benefit more due to the existing of novice developers. It is
surprising that they adopted the most economic strategy to protect
their own interest, which is just performing a little better than the
novice ones. We have consulted several subjects to make sure
whether they intended to do this. Most of them refused to admit
they use this strategy with intention. Their choices are more
intuitive; they just followed their feelings on the amount of efforts
that make them free of penalty. This reflects the experienced
experience can make precise judgment on other team members’
capability in their subconscious.

Table 1. Summary of Major findings

44

6.3 Summary of Findings
We use table 1 to summarize above findings with corresponding
research questions, propositions, and research methods.

7. DISCUSSIONS AND IMPLICATIONS

7.1 “SIDE” Findings
Besides the findings mentioned in prior section, there are still
several interesting “side” findings.�

7.1.1 Increased “Discontentment” towards Quality
Assurance Team
An interesting phenomenon discovered during our interviews is
the increase of “discontentment” towards Quality Assurance Team.
In several interviewees’ descriptions, people in Quality Assurance
Team are bad guys, who always try to make them be fined. One
interviewee’s words represent this negative attitude: “These bad
guys do not write any useful code, but always finding pleasures
through making us be penalized. Even a small fault such as
spelling mistake in comment, they also put it into report.” This is
reasonable from the “common enemy” perspective.

7.1.2 Some Persons Are Really “Unfortunate”
In studied period, 31 cases of penalty were recorded. However,
the distribution of penalty is not even for each individual. 2
persons were penalized more than others; they were fined 12
times, nearly 40% of all penalties. This is not accidental for two
“Unfortunate” guys. This indicates these two developers may not
capable (or suitable) for their role. In fact, one of them was fired
in January. 2009 for bad peer evaluations. To some extend, the
penalty may be potential for staff evaluation. However, the
organizations should be very careful to use it as a criterion in
developer evaluation because it can not reflect comprehensive
capability of staff and is also easy to be influenced by many other
factors (e.g. task attributes, etc.)

7.1.3 Is Gender or Educational Level an Important
Factor?
According to some impression we acquired in the story telling
session, we found female developers expressed more complaints
at the beginning stage of penalty policy. Therefore, it may take
longer time for the female developers to adjust themselves.
However, we could not verify this point through statistical
measures. In our data set, there are 3 female cases. The number of
cases is too small to be statistical significant. Besides, two of them
are inexperienced. This point is not conclusive but needs further
investigation.
For the educational levels, the situation is similar as gender factor.
In general, university-level education does not have great
differences than postgraduate-level education. For professional
software development, accumulating experience is more important
than earning high educational degrees.

7.2 Which is more important for Novice
Developers, Penalty or Experience Increase?
It is safe to conclude that penalty mechanisms do help the
experienced software developers improve their performance.
However, we still face a question on whether novice developer’s
performance improvements are also caused by penalty policies or

just the result from experience accumulations. From figure 1, the
performance curve’s initial part does suggest experience increases
do help improve novice developers’ performance.
To answer this question, we need a close analysis towards the
novice developers’ performance curve. First, if we suppose
penalty policies have nothing with novice developers’
improvements, so what should the performance curve’s shape
look like? The answer is quite clear. The curve should show a
keeping decrease trend and without any wave trough (NO “U”
shape pattern). However, we can see an apparent wave trough in
the eighth week. Based on this, we can draw a conclusion that
novice developers’ performance improvements are also partly
caused by the penalty policies.

7.3 Promotion vs. Prevention
In organizational level, there are two kinds of measures to
motivate employees. The first one is promotion while the second
one is prevention. A promotion focus, would involve a state of
eagerness to attain advancement and gains whereas a prevention
focus would involve a state of vigilance to assure safety and non-
losses. In another word, if employers want to facilitate their
employees to utilize their creativity to solve problems, promotion
measures will be a wise choice. But, if employers want to prevent
their employees to do some “wrong” things, prevention measures
could be adopted.
The promotion and prevention perspective provides a theoretical
lens for us to understand why penalty policy in Beta showed some
effectiveness. Now, we can have a close look about the case
described in this article. Figure 3 depicts a typical online
multiplayer game development process which contains 7 major
sub-processes.
From this figure, we can easily identify the sub-process need high
creative thinking is the first four. The programmers’ work most
concentrates on following two sub-processes. These two processes
do not ask programmers to be creative or imaginative. They just
need to follow specifications to finished coding works. According
to our observation in Beta, people involving in first four sub-
processes are often awarded to promote their creativity, while
programmers are often fined to prevent their careless mistakes.

�
�

Figure 3. Typical Online Multiplayer Game Development
Process and People Involving in Each Sub-process

45

7.4 Implications for Future Practice
 7.3.1 Punishment/Penalty Policy Design
As we stated before, there are many conflicting opinions towards
launching a penalty policy in organizations. It is also hard to give
an explicit answer whether organizational punishment or penalty
can contribute a positive influence to the software development
practice. However, we could prove that the success of a
punishment/penalty policy depends on various contextual and
subjective factors whether from the people’s perception or
objective measurement perspective. It is worth both practitioners
and academic researchers pay more efforts on this topic.
Besides, the penalty practice in Beta at least suggests a possible
way on how to implement penalty policies in typical software
development organizations. We summarize following 3 guidelines
for launching penalty policy in software development:

Guideline 1: Penalty policies should be well designed to ensure
the justice (In this case, the independent third party takes charge
of the evaluation, hence avoids the conflicts of interests).

Guideline 2: Penalty policies should be clearly delivered with the
information that the intention of penalty policy is not trying to cut
cost through lower the employees’ net income but to motivating
them to deliver high quality work.

Guideline 3: The last but not the least point is the penalty sum
should have an upper-bound, e.g. 5% of month salary, for each
individual. Without the upper-bound, software engineers may feel
upset and refuse to accept it.

It is also important to remember that no policy can make every
stakeholder happy; therefore, achieving compromise is more
important than forcing developers to obey.

7.5 Threats to Validity
7.4.1 Internal Validity
From an internal validity point of view, the data collection was
conducted by one researcher. For a single project, the data
collected by the same person under the same protocols. There was
no necessity and possibility for the researchers to influence the
subjects’ story telling in narratives collection. All the software
engineers and their managers who engaged in this study have no
conflict of interests with the researchers. The reasons and impacts
were self-reported in free form to remove any bias that could have
been introduced by the researchers influence. Further more, the
researchers had no privacy relationship with the research subjects,
formal agreement and fully acknowledgements to sensitive
information are achieved.

7.4.2 External Validity
From an external validity point of view, this study is based on the
software development organizations locating in China. Although
we made this decision mainly because of the convenience
considerations, it is still an appropriate choice, for Shenzhen is
one of the cities where have highest developed knowledge
intensive (especially game design) industry. Besides, Shenzhen is
also a city high in diversity. It is possible that the results will be
still valid in other areas in China. However, for the success of
software development depends on a potentially large number of
relevant context variables including the organizational factors and
task specific factors such as domain knowledge and task

familiarity. We can not ensure the results still work in other
settings. For this reason, we cannot assume a priori that the results
of our study generalize beyond the setting in Alpha. Researchers
would become more confident in a theory when similar findings
emerge in different contexts [7]. Towards this end we intend that
our case study will be replicated in different setting by the
researchers (ourselves are also included). This research also can
be treated as the benchmark for other future similar research
conducted under other settings.

7.6 Limitations
The major limitation of this study is the relative small sample size
(total 21 data cases). Due to the policy of sensitive information
disclose, we can not access more data from Alpha. The interview
subject selection process is also not random. Besides, we also can
not ensure the results of this study still work well in other settings.
However, this is also another aspect of this study’s possible value;
our research can be treated as the benchmark for other future
similar research conducted under other different organizational
contexts.
Another limitation is that our study is still far from mature. With
more data or experience with this topic, other related issues may
be apparent. For now, we think it is more important to consider
how well this research supports the future practices and researches
of punishment/penalty in software development organizations. In
particular, does it help to:
� Understand the influence of punishment/penalty in software

development organizations better,
� Explore new space and directions for research on this issue,
� Draw attentions from both practitioners and researches,
� Provide useful implications to penalty policy design and

future practices.
Our study has great potential in this regard. We still hope to
identify new issues to broaden and enhance our knowledge on this
topic.

8. Concluding Remarks
Organizational punishment is an issue full of different opinions.
Some of them even totally oppose to some others. For
organizational punishments in software development, few formal
works address this topic. If no empirical evidence for this
pervasive phenomenon, little progress can be made on leveraging
organizational factors to improve software systems’ quality. To
fill this gap, we investigated the punishment/penalty in software
development organizations. Rather than only focusing on the
developers perceptions towards penalty policy, we also examined
the penalty policies influence to program quality.
In general terms, our study suggested that, at least in Beta, the
penalty policies have gained some success in motivating software
developers deliver better programs although the potential of
software developers is still not fully utilized. Through the
interviews and quantitative data analysis, some interesting
phenomena have been discovered, such as the differences between
experienced and novice developer, and third person effects. The
implications of this study are also discussed. We hope this study
can be treated as the benchmark for the future replication and
extension researches in different contexts and settings. Some other
research methods such as organizational experiments are also
worth to try.

46

9. ACKNOWLEDGMENTS
The authors want to show their thanks to all participants of this
study, especially for several project mangers for helping us to get
an opportunity to collected data from their team. We also want to
thank Dr. Bolloju for his comments to this work.

10. REFERENCES
[1] Channelnewsasia:

http://www.channelnewsasia.com/stories/afp_asiapacific/vie
w/449967/1/.html, accessed at 14th Sep. 2009.

[2] Introduction to Curve Estimation:
http://faculty.chass.ncsu.edu/garson/PA765/curve.htm,
accessed at 14th Sep. 2009

[3] Arvey, R. D., Davis, G. A., and Nelson, S. M. 1984 Use of
discipline in an organization: A field study. Journal of
Applied Psychology, 69(3): 448-460.

[4] Ball, G.A., Treviño, L.K. and Sims, H.P. Jr. 1994 Just and
unjust punishment incidents: Influences on subordinate
performance and citizenship. Academy of Management
Journal, 37 (2): 299-322.

[5] Ball, G. A. and Sims, H. P. 1991 A conceptual analysis of
cognition and affect in organizational punishment, Human
Resource Management Review, Vol. 1, 227-243.

[6] Baranski, B et al. 2006 High-order punishment and the
evolution of cooperation. In Proceedings of the 8th annual
conference on Genetic and evolutionary computation
(GECCO2006). ACM, 379-380.

[7] Basili, V., Shull, F., and Lanubile, F. 1999. Building
Knowledge through Families of Experiments. IEEE
Transactions on Software Engineering, 25(4), pp. 456-473.

[8] Butterfield, K., Treviño, L.K. & Ball, G.A. 1996.
Punishment from the manager's perspective: A grounded
investigation and inductive model. Academy of Management
Journal, 39, pp. 1479-1512.

[9] Butterfield, K. D., Trevino, L. K., Wade, K. J. and Ball, G.
A., 2005 Organizational punishment form the manager�s
perspective: An exploratory study. Journal of Managerial
Issues, Vol. 17, Issue 3, pp. 363-382.

[10] Cataldo, M., Herbsleb, J.D., Carley, K. Socio-Technical
Congruence: A Framework for Assessing the Impact of
Technical and Work Dependencies on Software
Development Productivity, 2nd Symposium of Empirical
Software Engineering and Measurement, Kaiserslautern,
Germany, 2008.

[11] Deci, E. L. The effects of contingent and noncontingent
rewards and controls on intrinsic motivation. Organizational
Behavior and Human Performance, Vol. 8, pp. 217-229,
1972.

[12] Deci, E. L. and Ryan, R. M. Intrinsic motivation and self-
determination in human behavior, 1985.

[13] Fenton, N. and Neil, M. 1999 A critique of software defect
prediction models, IEEE Transaction on Software
Engineering, Vol. 25, No. 3, pp. 1-15.

[14] Luthans, F., and Kreitner, R. Organizational behavior
modification and beyond. Glen-view, IL: Scott, Foresman,
1985.

[15] Keskin, H. 2009 Antecedents and consequences of team
memory in software development projects. Information and
management 46 (2009), pp.388-396.

[16] MacCormack, A., John Rusnak, and Carliss Y. Baldwin.
2008 The Impact of Component Modularity on Design
Evolution: Evidence from the Software Industry. Harvard
Business School working papers.
http://hbswk.hbs.edu/item/5831.html. accessed at 18/09/2009.

[17] Martin, C. L., and Bies, R. J. 1991 Just laid off, but still a
"good citizen"? Only if the process is fair. Paper presented at
the annual meeting of the Academy of Management, Miami
Beach, FL.

[18] McGregor, D. and Cutcher-Gershenfeld, J. 2006. The Human
Side of Enterprise, McGraw-Hill Skarlicki, D. P. and Kulik,
C. T. Third Party Reaction to Employee (mis)Treatment: An
Justice Perspective. Research in Organizational Behavior:
An Annual Series of Analytical Essays and Critical Review.
Vol 26. Ed. by and Barry M. Staw, Roderick Moreland
Kramer. pp. 183-230. Elsevier 2005.

[19] Patton P., and Jayaswal B. 2006 Design for Trustworthy
Software: Tools, Techniques, and Methodology of
Developing Robust Software. Prentice Hall.

[20] Sharp,H., N. Baddoo, S. Beecham, T. Hall, and H.Robinson,
2009 Models of Motivation in Software Engineering,
Information and Software Technology 51, 2009, pp. 219-233.

[21] Sigmund, K., C. Hauert, and M. A. Nowak. Reward and
punishment. In Proceedings of the National Academy of
Sciences of the United States of America, volume 98, pp.
10757-10762, 2001.

[22] Treviño, L.K. The social effects of punishment: A justice
perspective, Academy of Management Review, 17: 647-676,
1992.

[23] Treviño, L. K., & Weaver, G. R. 1998. Punishment in
organizations; descriptive and normative perspectives. In M.
Schminke (Ed.). Managerial ethics: Moral management of
people and processes: 99-114. Mahwah, NJ: Lawrence
Erlbaum.

[24] Vance Wilson, E., and James R. Connolly. Effects of group
task pressure on perceptions of email and face-to-face
communication effectiveness. In Proceedings of the 2001
International ACM SIGGROUP Conference on Supporting
Group Work, pp. 270-278.

47

