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ABSTRACT
Baseline trust, which refers to the personality aspect of trust
and varies with different individuals, is essential for under-
standing the development of trust and cooperation in a team.
At the same time, informal, non-work-related conversations
(aka, cheap talk) have positive influences on the diffusion of
trust and cooperation in global software engineering (GSE)
practice. This paper seeks to develop an understanding of
the influences of individuals’ baseline trust on the diffusion
of trust and cooperation, in the presence of cheap talk over
the Internet. We employ a novel approach, designing a vir-
tual experiment that integrates abstract agent-based modeling
and simulation with realistic, empirical network structures
and baseline trust data from two large open source projects
(Apache LUCENE and Google CHROMIUM OS). The results
highlight the significant impact of baseline trust on the diffu-
sion of trust and cooperation, for instance, the emergence of
non-traditional diffusion trajectories. The results also demon-
strate that proper seeding strategies can improve the effective-
ness and efficiency of diffusion of trust and cooperation.
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INTRODUCTION
Trust, as an expectation that the other will behave coopera-
tively in dyadic social interactions, ensures the cooperation
among individuals [2, 5, 29]. Trust and cooperation is crucial
to the success of global software engineering (GSE) projects.
Trust and cooperation can diffuse and be seeded through
proper social and technical mechanisms in a networked GSE
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team context, for example, [3, 4]. As one of these mecha-
nisms, informal, non-work-related conversations (aka, cheap
talk) have been proven to have positive influences on the
emergence and the diffusion of trust and cooperation through
theoretical and empirical means [66] . However, these stud-
ies have two limitations. First, they often assume, explicitly
or implicitly, individuals in a team are similar. Thus, they
neglect the individuals’ variations on “baseline trust”. Sec-
ond, most current studies on the diffusion of social behaviors
typically consider social network structures generated from
random or small world graphs rather than real-world inter-
personal networks. Due to the lack of basis in reality, these
results may not be relevant to or applicable in practice.

The Importance of Individual Variations on Baseline Trust
“Baseline trust” refers to an individual’s general, global ten-
dency to perceive the trustworthiness of other individuals (or
other entities, such as organizations) [16]. Baseline trust is
evident in statements such as: “most people are trustworthy”
or “most people are basically good and kind” [15, 69]. As
the personality trait of “trust,” its influences on the diffusion
of situational trust from one team member to another can-
not be neglected. Moreover, the influence of baseline trust on
the development of trust and cooperation may be very signif-
icant when considering the social network structure of GSE
teams. Although CSCW literature [25, 29, 72] has revealed
the importance of baseline trust (or propensity to trust others),
the analysis unit is almost always in individual level without
considering connections among individuals, hence may not
reflect the group level dynamics.
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Figure 1. An example of baseline trust’s influences on the development
of trust and cooperation in a simple 4-node network. The links indicate
peer influence.

In a networked team, an individual’s baseline trust will not
only influence his or her behavioral choices but also impact
others in the same network. For example, figure 1 abstractly
depicts a team in which the node “B” has a differing baseline



trust. Without considering baseline trust, there are no struc-
tural differences between the two networks, and one might
draw the conclusion that the development of trust and coop-
eration exhibits a similar pattern. However, when considering
baseline trust, the situation changes. For instance, the devel-
opment of trust and cooperation may fail if B strongly prefers
to be uncooperative. Hence, C and D may not switch to “co-
operate.” Although baseline trust is important for develop-
ing situational trust and cooperation, it is often neglected to
simplify the complexity, especially when considering it in a
social network context.

Our prior interviews [2] confirm that global software engi-
neering practitioners vary when it comes to baseline trust. A
few interviewees tended to trust everyone without any reser-
vation. One interviewee’s comment represents this attitude:
“I trust everyone. Even if they do something wrong, I still be-
lieve people are usually trustworthy.” There are also many
interviewees who prefer to “give others the benefit of doubt.”
In other words, they trust until proven otherwise. By contrast,
some individuals need their remote colleagues to prove they
are trustworthy. He or she trusts others only when there is
a reason. There are still a few people who believe they can
never trust any of their collaborators, and may always prefer
to be distrustful. Moreover, incorporating baseline trust also
enables a new seeding strategy. With baseline trust, it is pos-
sible to identify the small fraction of agents with the lowest
trust. Triggering the diffusion of trust and cooperation from
them may be a good alternative.

Empirical Networks vs. Artificially Generated Networks
Investigating the influences of individual variations on base-
line trust requires an empirical network. Although we can
arbitrarily assign any baseline trust to any node in an artifi-
cially generated network, there is no way to assess how much
this method distorts reality. Without empirical data to con-
strain them, under diverse, unrealistic assumptions, the sim-
ulations may yield different results. Furthermore, due to the
lack of basis in reality, these results may not be relevant to, or
applicable in, practice. Using empirical networks provides a
way to incorporate empirically observed distributions of trust
propensities or correlations between individuals’ personality
and social network characteristics.

An artificially generated network provides a great flexibility
for investigating social interactions in a network. As already
mentioned, though, this flexibility may not correctly reflect
the reality. On the other hand, although the empirical study is
more realistic than simulation, it usually fails to assess global
characteristics and the effects of multiple strategies due to the
needs to maintain experimental control and precision [63].

Research Statement
Given the important role of baseline trust, we design a study
to investigate its influences on the diffusion of trust and co-
operation in networked GSE teams, with online cheap talk
moderating the process. We adopt agent-based modeling and
simulation, grounded by real world observations of empirical
networks and individuals’ baseline trust. This approach has
not yet been widely adopted but does provide several benefits

[4]. It leads to ready-to-use practical implications and avoids
the troublesome mismatch between artificially generated and
real-world networks. We also aim to examine whether two
specific seeding strategies (seeding from the hubs, and seed-
ing from the distrustful) would be helpful when considering
baseline trust. In short, our research merges the flexible, but
abstract, simulation-based approach with the more realistic,
yet limited, empirical approach, aiming to answer following
questions:

With the presence of cheap talk over the Internet,

RQ1: how does baseline trust influence the diffusion process
of trust and cooperation in the empirical network context?

RQ2: what are the different seeding strategies’ impacts on
trust diffusion and cooperation in the empirical network
context?

The research distinguishes itself from the prior work in social
network analysis and trust in following aspects. First, com-
pared with the prior research on the social network analysis
on organization process [9, 10, 33, 45, 58, 59, 12], we do
not attempt to identify causality between network’s structural
features and organizational outcomes. Our focus is identi-
fying the dynamic patterns of the diffusion of trust and co-
operation under specific network contexts without consider-
ing detailed topological characteristics (e.g., structural hole).
Second, compared with the prior empirical work on trust
such as Jarvenpaa et al. [29], we do not focus on the an-
tecedence and consequence of individual’s trust. We aim to
answer whether and how the trust and cooperation could or
could not be developed in a networked team consisting of
individuals of different baseline trust. Lastly, although we
utilized empirical networks and empirically-derived individ-
ual characteristics as the infrastructures for the simulation,
the research approach is essentially generative. In another
word, the empirical data was used to provide the context of
the study rather than evidence. Via the models and simu-
lations, we deductively develop propositions characterizing
real-world phenomena [14]. This approach comports well to
current mainstream empirical inquiries ([29, 73]) on trust in
globally distributed team.

The remainder of this paper is organized as follows. The next
section presents some background. Next, we provide a high-
level overview of the research process, followed by a section
that discusses how we solve our major research tasks’ techni-
cal challenges. Then, we introduce the design of the virtual
simulation experiment. Then, we present the results and find-
ings. The remaining two sections respectively discuss related
issues and conclusions.

BACKGROUND

Adapting Stag Hunt Game to Study Trust in GSE
The influences of informal, non-work-related conversations
(aka, cheap talk1) on trust and cooperation development have
been studied previously [11, 23, 24]. Recently, we [66, 67]
proposed an approach that utilizes game theory (specifically,
1The cost of cheap talk in the economics literature is assumed to be
zero. However, we allow the cost to be minimal in this paper.



stag hunt game) to investigate cheap talk and trust in the con-
text of GSE practices. This approach provides opportunities
for researchers to specify and simulate individuals’ behavior
to study the dynamics of the GSE team. The research de-
scribed in this paper adapted this approach to develop a be-
havioral model, extending it to incorporate individuals’ base-
line trust. In this subsection, we will first briefly introduce
the basics of using stag hunt game to describe trust and cheap
talk in GSE.

Classic Stag Hunt Game
The classic stag hunt game is a non-zero-sum, two-player
game in which each player has two strategic choices: coop-
erate or defect (see fig. 2). Stag hunt derives from an ancient
hunting scenario. In ancient times, two men hunt for food.
If both of them defect, they will hunt individually, and each
would get a hare. If both cooperate, they could kill a stag,
and each would receive one-half of a stag. If one cooperates
but the other defects, the cooperator would receive nothing
or very small payoff and the defector would receive a hare.
Formally, the stag hunt game can be represented by the first
payoff matrix in fig. 2 if R > T > P > S 2. For the numerical
example, if both cooperate, each individual’s payoff is 2 (total
payoff = 4) If one cooperate while the other defect, the coop-
erator will only receive 0.5, and the defector will get 1.5 (total
payoff = 2). If both defect, each will receive 1 (total payoff =
2). The state of (cooperate, cooperate) is a payoff-dominated
equilibrium (best total payoff), while (defect, defect) is a risk-
dominated equilibrium (no risk). Which one can be achieved
is determined by players’ belief in their opponent: namely,
their trust [53, 54, 56].
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Figure 2. The stag hunt game and a numerical example. The elements
of matrix represent the payoffs of the “row” player.

Software Development and Stag Hunt
The stag hunt game is a natural metaphor of dyadic (one-
to-one) collaborations3 in software engineering activities. In
many cases, developers do not necessarily need to cooperate
with other team members to complete their jobs (“receive a
Hare as payoff”), even when their work items are highly in-
terdependent. However, low cooperation may influence their
work’s quality. Cataldo et al. [13] pointed out that communi-
cation among developers can significantly influence the qual-
ity of a software system, even if work items can be indepen-
dently completed. Thus, collaboration can produce higher
quality work (“receive a half Stag as payoff”). In some cases,
2T may also equal to P, and S is not necessary to be 0 although it
should be the smallest number.
3In the scope of this paper, cooperation is restricted to dyadic inter-
actions to simplify the analysis and discussion. In fact, multi-person
cooperation can be conceptualized as a series of dyadic ones.

a software engineer may believe that her colleague will co-
operate, but things do not go as she expects. Thus, she may
experience some “unfavorable” results (e.g., fail to deliver a
commitment on time) due to the other’s “defect,” whereas the
other can still achieve the utility of individual action (“receive
a Hare as payoff”). Hence, dyadic collaboration in software
development can be analogous to stag hunt, allowing us to
use standard Evolutionary Game Theory (EGT) techniques
to investigate software development collaborations.

Stag Hunt Game with Cheap Talk over the Internet
We have proposed an extension to classic stag hunt game that
allows the existence of cheap talk over the Internet [66, 67].
Figure 3 depicts the new game’s payoff structure. A new
strategy “C-C” was added to describe the “cooperation” af-
ter “cheap talk.” Different from face-to-face cheap talk, cheap
talk in GSE projects usually happens over the Internet. There-
fore, it is reasonable to assume this would lead to some small
cost (e) for cheap talk participants. Besides, since the com-
munication records are publicly accessible, uncooperative be-
havior (after the other player shows some cooperative signal
with cheap talk) may be punished (g). The cooperative indi-
vidual may receive compensation. We assume the compensa-
tion equals to the punishment (g), so the top left cell changes
to S − e + g. Therefore, if a person using cheap talk meets a
cooperator, he or she will receive R − e (benefit from cooper-
ation (R) minus the cost of cheap talk (e)), and the cooperator
will keep all benefit R from cooperation as payoff. If both
use cheap talk, they will share the cost of cheap talk, so their
payoffs are same (R − e/2). If he or she meets a defector, he
or she will receive S − e + g, and the defector will get T − g
for g is the punishment. Above changes on payoff structure
are highlighted in red in figure 3. The study adopted that pay-
off structure and the numerical model to specify the payoff of
using different strategies.
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Figure 3. The new stag hunt game with cheap talk and a numerical
example. The elements of matrix represent the payoffs of the “row”
player.

Investigating Socio-Technical Systems with Simulation in
HCI & CSCW
The main research approach is agent-based modeling and
simulation. Leveraging stag hunt game with cheap talk, the
model expresses the strategic changes at both individual and
team levels. By simulating an individual behavioral decision
process in interactions, we capture a complex dynamic sys-
tems’ behaviors and properties [46]. Agent-based modeling
and simulation have been increasingly applied in HCI and
CSCW to develop theoretical knowledge and practical design



implications [41, 47]. It also has the potential to link related
social theories in different research streams together to inves-
tigate complex social phenomena [18]. The research realizes
these benefits. Moreover, the research also advances this ap-
proach by integrating agent-based modeling and simulation
with empirical data to develop rigorous and relevant studies.

RESEARCH PROCEDURE
Data Collection and Cleaning
The research utilized empirical data from two large open
source projects: Apache LUCENE4 (data from 04/2005 to
12/2014), and Google CHROMIUM OS5 (data from 11/2009
to 04/2011). The reason we do not include all available
Chromium OS data is that Chromium OS’ IRC was “pol-
luted” by the some end users’ messages around the release
of the first Chromebook in mid-2011. The main reason we
chose them is that both are large enough to provide real glob-
ally distributed team setting, while the two projects still has
many differences. The two projects are different in terms of
size and application domain. Apache LUCENE (≈900 KLoc)
is an open source information retrieval framework. Google
CHROMIUM OS (≈6,000 KLoc including a Linux kernel)
is a Linux-based open source operating system. They are
also different from each other in several other aspects. First,
LUCENE is a pure open source project, while CHROMIUM OS
is driven by Google. Second, the contributions to LUCENE
are all voluntary, while contributing to CHROMIUM OS is a
part of some Google employees’ routine job. Third, LUCENE
is built from scratch, while CHROMIUM OS reused the Linux
kernel that already has a huge code base. These differences
enable us to ensure the results may be still applicable to a
wide-range of large open source projects. However, they
may not well represent small open source projects and global
teams in a traditional organization.

Collecting Communication Records
There are some off-the-shelf tools available for collecting on-
line data such as mailing lists. However, these tools may have
some drawbacks, such as obscuring email addresses for pri-
vacy reasons [7]. Moreover, most of them cannot support
multi-data sources. We wrote a crawler in Python to down-
load the public communication records from various sources.
In total, we collected 83,627 HTML documents.

Data Extraction and Cleaning
The original HTML documents were not ready for use.
We leveraged Python BeautifulSoup to analyze the
HTML files and extract the information we needed. During
this step, we also excluded all auto-generated information,
such as the commit and build messages that were automati-
cally sent to mailing list subscribers. To ensure the reliability,
we manually examined 100 crawled records for each type of
data in each project (total: 700). Then, we compared them
with the automatically extracted and cleaned data. Overall,
the automatic process provided satisfying results (Precision:
98% 100%, Recall: 97% 100%, varies over different cate-
gories). We labeled every cleaned piece of information ac-
cording to its category and stored it in a MongoDB database
4https://lucene.apache.org/.
5https://www.chromium.org/chromium-os/.

as a JSON Object. A JSON object records message content,
authors, time, original URL, and any other necessary informa-
tion (e.g., mentions in a message). In total, we have 121,539
JSON objects. Then, we built a simple index to associate
users with the text content they produced. Using the data, we
derived the two projects’ empirical network structures and
inferred their members’ baseline trust through Natural Lan-
guage Processing (NLP) techniques.

Study Procedure and Main Task
The study design follows standard agent-based modeling and
simulation procedures [37]. Before running the virtual ex-
periment, we built the environment (the networks), inferred
agents’ baseline trust from their communication records, and
specified the decision rules for them to interact with each
other. Then, we performed the virtual experiment, analyzed
the data collected from the experiment, and then summarized
our results and findings.

Extracting Empirical 
Networks

[Challenge I]

Inferring Individual’s 
Baseline Trust
[Challenge II]

Specifying Individual’s 
Strategic Behaviors with 

Game Model
[Challenge III]

Virtual Simulation 
Experiment

Results and 
Findings

Figure 4. The process of performing the major research tasks.

TECHNICAL CHALLENGES AND SOLUTIONS
There are some technical challenges associated with the ma-
jor tasks (as we marked in figure 4). In this section, we intro-
duce these challenges and corresponding solutions.

Challenge I: Building Empirical Networks
Software engineers’ social networks have been the focus of
various studies [8, 12, 21, 26]. In this present work, we only
build a social network for those who contributed source code
to the repositories, but excluded peripheral contributors who
may report bugs, but have not contributed code. Following
[8], we only considered those who contributed code and have
exchanged more than 150 messages (in all communication
mediums such as mailing list, IRC, issue tracking, and dis-
cussions). We reasonably assume that people who have not
exchanged a substantial number of messages over a few years
can hardly have influenced their peers. This also ensures that
we can precisely figure out people’s baseline trust from the
relatively large amount of records for every individual. The
major challenge is how to re-establish the individual’s iden-
tity, because individuals may use different names for different
communication mediums, even in a single project.

For example, a developer named Tyrion Lannister may use
the name “The Imp” in IRC chatting, while using an email
address “tlan@casterly-rock.com” in the versioning system.
It is almost impossible to automatically infer whether or not
these two identifiers represent the same person for it re-
quires some human judgment. In this example, a person who

https://lucene.apache.org/
https://www.chromium.org/chromium-os/
URL


watches the popular television show Game of Thrones likely
understands the link between “The Imp” and “ tlan@casterly-
rock.com.” However, computers cannot automatically make
such associations. Although many developers tend to use all
or part of their email addresses as their usernames, a sub-
stantial proportion uses multiple names (LUCENE: 31 in 82,
CHROME-OS: 35 in 129). The multiple identities must be re-
solved to a single identifier for purposes of assigning network
nodes.

Solution-Entity (Name) Resolution
Although we can manually identify this study’s mapping, a
manual method is not scalable for very large teams. Con-
sider this simple heuristic: if an individual contributor uses
the combination of < username, email > in an open source
project, he or she might use this combination in other online
occasions (e,g., community Q&A platform such as stackover-
flow.com, a game community, etc). For a specific username,
the corresponding email is probably the email address that
has the highest co-occurrence with the name on the Internet.

We developed a method that leverages Google search to re-
trieve the number of search results for the different combina-
tions of < username, email >. We wrote a script that auto-
matically sends search requests to Google.com by manipulat-
ing the search URL. Then, we analyzed the returned HTML
to retrieve the number of search results can be retrieved from
the corresponding HTML elements. For a given user name,
we assume the combination has the highest number of search
results is the right mapping.

Although it is quite simple, the method yields strong re-
sults. We performed a simple experiment using manually
matched pairs of name and email as the ground truth. We
first randomly selected 100 pairs of manually matched <
username, email >. Then, we used the above method to iden-
tify the mappings over these pairs’ two sets of username and
email. The results were encouraging, as it returned 96 pairs
of mapping, 93 of which were correct (precision = 0.97).
For this specific study, we also manually matched names
and emails while experimenting with the above automatic
method. If a developers’ social networks are very large,
the automatic method is a good option for avoiding time-
consuming and costly manual efforts. To further evaluate
this method, we applied the six 1-attribute non-learning en-
tity resolution algorithms (e.g., COSY) [35], the precision of
these algorithms are between 0.42 and 0.79. We also tried a
commercial entity resolution product: Alchemy’s entity dis-
ambiguation API6. It yielded 0.71 precision and 0.65 recall.
Our simple algorithm outperforms all of them on this specific
username matching problem.

Solution-Network Building
The entity (name) resolution enabled us to build mappings
between unique individuals and their communication records.
Using these records, we built the network among developers.
As we pointed out before, the network only contains those
who were code contributors and had a substantial amount of

6http://www.alchemyapi.com/api/entity/
disambiguation.

communication records. This excluded those ad hoc contrib-
utors. The diffusion of trust and cooperation in a network
relies on interpersonal interactions within the network. When
defining the links, we need to make sure the interactions rep-
resented by a link are meaningful and substantial. Moreover,
since the data comes from hybrid sources, we need to define
the clear standard of “interaction” before defining “connec-
tion/link” between individuals.

We followed the guidelines of extracting networks from hy-
brid data sources to define interaction and then use it to iden-
tify links [28]. In this study, an “interaction” could be one of
the following four types of communications: (1) a send-reply
pair in mailing list; (2) an explicit mention in IRC discus-
sion; (3) both commenting on an issue; (4) both discussing
in the same discussion thread. Based on this definition, two
individuals is considered to be connected if the following two
conditions hold. First, the interaction between them is greater
than once per month on average during their shared tenure.
Second, the total number of all type of interaction is no less
than 30 during their shared tenure. This ensures the exclu-
sion of casual relationships among developers. The links are
unidirectional, so the network is undirected. The network is
static, reflects the status quo in the last day of the available
data. Although using the static network is a common prac-
tice, the main limitation is that it cannot reflect the dynamic
evolution of the network structure. Considering dynamic net-
work structure will enhance the study in future.

Challenge II: Extracting Individuals’ Baseline Trust
Conventionally, standard questionnaire surveys based on ma-
ture psychometric models are the typical method used to iden-
tify an individual’s trust [15]. However, it is very difficult
to ensure open source project members’ participation, espe-
cially considering that most surveys’ response rates fall be-
low 20%. It is highly likely that we would be unable to as-
sess the baseline trust of the majority of developers’ social
networks, which would inevitably lead to highly distorted re-
sults. Moreover, a questionnaire-based survey is difficult to
automate, meaning it would not likely be used to develop au-
tomated decision support tools for GSE practitioners, which
would thus limit this study’s potential practical value.

Solution
For each individual, we collected his or her communication
records from the IRC channel, mailing list, and issue tracking
system. Then we organized the communication records by
month. Using NLP methods [31, 32], we calculated the trust
score for each month. For each month, we required a sub-
stantial number of total messages to ensure the reliability of
the trust score. Otherwise, we simply assigned a “0” to this
month. The two-tuple < month, trust > form a time series.
We performed a de-trending transformation on the time se-
ries using pracma package in R [44]. The detrending step is
necessary because trust might exhibit an increasing trend that
results from continuous interactions with other team mem-
bers. Obviously, the increasing trend is irrelevant to “base-
line” trust that is a stable personality trait.

To ensure the reliability of inferring trust through text records,
we used two linguistic lexicons: LIWC (Linguistic Inquiry

URL
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and Word Count: LIWC 2007 [42, 62]) and NRC Emotion
Lexicon [39]. Each contains multiple dimensions for a single
word; we only used the dimensions related to “trust.” To opti-
mize the results’ reliability, we took two measures. First, we
compared the level of precision using unigram, bigram, and
trigram. Using unigram is problematic. For instance, in the
sentence “I do not believe his commitment,” if one only uses
unigram, we would miss the negative descriptor “not,” and
incorrectly label the statement as an indicator of high trust.
We experimented with different combinations and found that
unigram+bigram almost always yielded the best results. This
is consistent with the prior research such as [36]. Second,
we computed trust with the LIWC and NRC Emotion Lexi-
con, compared the results, and found that they are quite con-
sistent. We computed the correlation of two trust score se-
quences for each individual, and found most of the pairs were
significantly correlated. We also compared their normalized
means and confirmed no significant differences. Hence, we
used the average trust of both lexicons as the final value.

Figure 5 describes the dynamics of a developer’s de-trended
trust inferred from their word use from 06/2009-12/2014. Al-
though trust changes over the time, it fluctuates either way
about the average (the horizontal line in figure 5). The aver-
age of trust hence approximates baseline trust.

To further validate the measurements, we randomly picked
five individuals from each project (total = 10). We manu-
ally coded their trust through reading their text generated in
each month. Since we could not assign numerical scores to
it, we categorized every individual’s monthly trust into five
categories: {Very High, High, Medium, Low, Very Low}.
Each category was mapped to a number from 2 (Very High)
to -2 (Very Low). Hence, we developed a manually coded
time series for every individual. Then, we pulled out the
corresponding ten time series generated with NLP-methods.
Thus, we had a pair of manually coded time series and NLP-
generated time series for every sampled individual. We tested
the similarity of each pair using cointegration [17]. The re-
sults show that eight out ten pairs of time series are cointe-
grated (p < 0.05), and another one pair is marginal cointe-
grated (p < 0.1). Only one pair of time series is not cointe-
grated. Since cointegration indicates two time series are mu-
tual predictable, most of the pairs are cointegrated enhance
the confidence towards the NLP-generated trust score.

We normalized the individual trust to the interval [-1, 1] using
the sequential combination of z-score normalization and fea-
ture scaling. These transformations are mainly for the con-
venience of specifying how the baseline trust influences in-
dividual behaviors (see the next section for details). Table
1 shows the basic statistics of baseline trust in LUCENE and
CHROMIUM OS.

Project Sample Size Median St. Dev.
LUCENE 81 0.329 0.380
CHROMIUM OS 126 0.261 0.517

Table 1. The basic statistics of baseline trust. For some individuals, we
cannot resolve their names even using manual mapping, so the sample
size is slightly smaller than the total number of individuals (see above
subsection “Challenge I.”)

Figure 5. The dynamics of a developer’s de-trended trust inferred from
their word use from 06/2009-12/2014. The line indicates the average
trust over this period.

The approach of inferring baseline trust is still only an ap-
proximation of people’s true baseline trust. In fact, even the
standard trust measurements’ validity is not fully guaranteed
because various factors may influence it various factors, in-
cluding respondent’s interpretation, survey execution, and so
on [60]. Explicit and implicit self-reporting biases may fur-
ther undermine the survey’s validity because people may pre-
fer to show that they trust rather than distrust others. Litera-
ture [52, 62] has established the acceptable level reliability of
analyzing an individual’s communication records to infer his
or her personality traits. The approach is also supported by
psycholinguistic models, for example, [62] and [52]. How-
ever, it is worthwhile to explore and evaluate the approach
when deploying it in other domains and scenarios.

Challenge III: Specifying Individuals’ Decision Dynamics
Since we have extracted an individual’s baseline trust, we face
another challenge; that is, how can we specify how an in-
dividual’s baseline trust influences their strategic behaviors?
We assume an agent’s decision-making is probabilistic rather
than deterministic. A specific strategy’s resulting higher pay-
off does not guarantee the agent will switch to it. Therefore,
we need to figure out how to properly reflect baseline trust’s
influence in decision models. Should baseline trust directly
influence the probability of an individual’s strategy selection,
or only their subjective judgment of utility (and then indi-
rectly their behavior)? And what is this influence’s extent?
All these concerns should be properly addressed.

Solution
Obviously, one can define a mechanism that allows baseline
trust (as a belief of the world, e.g., whether people are usually
trustworthy) to alter the probability of behaviors directly [20].
However, arbitrarily defining such a mechanism is risky, be-
cause different mechanisms may yield quite different dynam-
ics, and there is no easy way to evaluate the results’ sensitiv-
ity. Performing sensitive analysis over a series of functions is
very difficult.

We took a more conservative approach in this study. We ap-
plied the Belief-Preference-Constraints (BPC) model [22] to
treat “baseline trust” as a type of constraint that influences an
individual’s subjective evaluation of his or her payoff. In the
payoff structure, baseline trust’s influence will be expressed



by an idiosyncratic payoff. We assume that the utility func-
tions in equation 1 to satisfy von Neumann-Morgenstern’s
utility theorem [65], which allows us to avoid changing the
decision dynamics or arbitrarily altering the probability of
a specific strategy, which may lead to unfavorable noise in
global level dynamics.

Let S be the set of all possible strategies, and s ∈ S be a spe-
cific strategy. In this study, there are three possible strategies:
{cooperate (C), cheap talk-cooperate (C-C), or defect (D)}.
Ui(s) denotes the overall value an individual i received by us-
ing strategy s. According to the above discussions, Ui(s) is
determined by two parts as follows:

Ui(s) =


Pinteraction(s, s) + Ptrust if s = C
Pinteraction(s, s) if s = C −C
Pinteraction(s, s) − Ptrust if s = D

(1)

In equation 1, Pinteraction(s, s) refers to the (expected) payoff
received from interacting with one’s neighbors. In this study,
we only consider the direct influence, i.e., two directly con-
nected individuals, A and B. Let’s suppose he or she has M
neighbors, and (mC ,mC−C ,mD) denotes the numbers of his or
her neighbors who choose three possible strategies at period
t − 1. Pinteraction(s, s) can be written in the following form:

Pinteraction(s, s) =
∑ m s

M
× p(s, s) (2)

In equation 1, Ptrust refers to the idiosyncratic payoff resulting
from different baseline trust levels. We simply use a linear
function to describe it:

Ptrust = c × baseline trust. (3)

The constant c is in the range of [0, 1] where “0” means base-
line trust has no influence, and “1” indicates baseline trust has
full influence. This structure has been used in literature such
as [55] to address individual subjective bias or preferences’
influence on payoff evaluation. We can simply parameterize
the constant c to examine the results’ sensitivity.

Now let’s take a closer look at equation 1. As we mentioned
before, baseline trust ranges from [-1, 1]. If an individuals’
baseline trust is positive, they receive an extra idiosyncratic
payoff from using “cooperate” strategy. This is intuitive be-
cause the “cooperate” strategy fits their personality (they tend
to trust others). If they select “defect,” the overall value will
be less than the value they could get from interacting with
their neighbors, because they may feel unhappy for selecting
a strategy that does not fit their personality. Individuals who
have a negative baseline trust tend to distrust others and work
independently. Therefore, the overall value of using “defect”
will increase, whereas they may feel uneasy using the “coop-
erate” strategy. For “C-C,” we assume neither population has
a special preference for it. Therefore, their payoffs are solely
determined by the interactions.

Since baseline trust’s influence is only reflected by payoff
changes, we use the logistic learning rule to specify the proba-
bility of switching strategies [64], parameter β represents the
sensitivity towards payoff change: the larger β is, the more
likely it is that he or she will choose the best reply, given the

actions of his or her neighbors.

eβUi(s)∑S eβUi(s)
, β ≥ 0 (4)

Figure 6 shows an example of an individual’s decision-
making process. In the original example (figure 6.a), A
changes her strategy from “C-C” to “C,” since the latter re-
sults in a better payoff (1 vs 0.916). But in figure 6.b, if we
assume the baseline trust is -0.2 and c = 0.5, the expected
payoff of playing “C” becomes 1−0.5×−0.2 = 0.9. However,
the expected payoff of playing “C-C” is still 0.916 according
to equation 1. Obviously, 0.9 < 0.916, so the probabilities of
using “C” and“C-C” are specified in equation 5:

P(C) =
e0.9β

e0.9β + e0.916β <
1
2

P(C −C) =
e0.916β

e0.9β + e0.916β >
1
2

(5)

If β → +∞, the learning process is deterministic, and A will
definitely keep using C-C.

A

D C

B

After Review
A

D C

B

a. no baseline trust 

A  : C-C A : C

A

D C

B

After Review
A

D C

B

b. negative baseline trust

Figure 6. An comparison of applying the decision model to make deci-
sion (β→ +∞). In this example, A changes her strategy after the review
process.

A minor challenge is to determine who will be the next indi-
vidual to review their strategy. We implemented simple social
learning in a network. That is: (1) if an individual is selected
to review her strategy and changes it in period t, the next se-
lected individual should be one of her neighbors; (2) other-
wise, randomly pick one from all individuals. We also allow
individuals to make mistakes with a small probability (5%)
to reflect their bounded rationality [30]. It also ensures the
process will eventually reach stable absorbing states [70].

Summary
After solving the above challenges, we built infrastructures
(Networks, Individuals’ Baseline Trust, and decision rules)
for the virtual simulation experiment. Figure 7 visualizes the
LUCENE’s network with individual’s baseline trust depicted
in different levels of grayscale. The CHROMIUM OS’ net-
work is similar. In this study, we only considered the largest
connected component7 of the network, and removed those in-
dividuals who do not belong to it. Please note that, although
the average of baseline trust in each group is exactly “0” due
to the z-score normalization, both groups have more members
with positive baseline trust than those with negative baseline
trust (see table 1, both medians are positive).
7Informally, it refers the largest set of nodes and edges in which
there is a path formed by edges between every pair of nodes.
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Figure 7. The developer network of LUCENE ( largest connected compo-
nent only). The gray-scale indicates each individual’s baseline trust.

VIRTUAL EXPERIMENT DESIGN
The virtual experiment contains two parts, which correspond
to this study’s two foci (baseline trust and seeding strategy)
and two research questions.

Obviously, if c = 0, the baseline trust has no influence. There-
fore, it serves as a benchmark for assessing the influence of
different degrees of baseline trust. We sequentially manip-
ulated baseline trust’s influence (c) with the interval of 0.1
from 0.1 to 1. Thereby, we have 10 conditions: c = 0.1, c =
0.2, ..., c = 1. For each condition, we perform 1,000 inde-
pendent trials for each of LUCENE and CHROMIUM OS net-
works. In total, we have 10×2×1, 000 = 20, 000 independent
simulation trials. At the beginning of each trial, 10% individ-
uals are randomly selected as seeds who use the “cooperate”
strategy. To reduce the complexity, we set all individual’s
learning factor β = 10 for all simulations8. Sensitivity analy-
ses ensure the robustness of the results for a relatively broad
range of β (5 ≤ β ≤ 50).

We tested two seeding strategies: seeding from the hubs, and
seeding from the distrustful. As opposed to the first part,
seeds are not randomly assigned. We rank all individuals ac-
cording to their hub score9 and their baseline trust. Then, for
seeding from the hubs, we choose 10% of individuals with
the highest hub score and begin simulation with them. For
seeding from the distrustful, we choose 10% individuals who
are lowest in baseline trust, and begin simulation with them.
All other settings are kept intact. As in the first part, for each
seeding strategy in each baseline trust condition (c), we per-
form 1,000 independent trials for each network. We reuse
a discrete event simulator to manage the simulation process.
We keep detailed records of every simulation trial’s state in
every period.

RESULTS AND FINDINGS

Overview of Results
In this section, we present the results of the virtual simula-
tion experiments. The analyses yield six propositions, which
8The distribution of learning factors may correlate with the distribu-
tion of baseline trust, future research may need to address this point.
9The hub score was calculated with the method introduced in Man-
ning et al.[38], we made slight changes.

provide answers to the two main research questions. Table 2
summarizes the correspondence between the research ques-
tions and these propositions. The results are aggregated from
all 1,000 trials in a given experiment condition.

Diffusion Trajectories
We then examined the influence of coefficient c, which deter-
mines baseline trust’s different degrees of influence. If c = 0,
baseline trust has no influence (see equation1. With the in-
crease of c, the influence of baseline trust becomes more sig-
nificant.

Diverse Trajectories of Diffusion
Figure 8 (a-f) shows the six trajectories of full diffusion of
trust and cooperation in LUCENE’s network. These six tra-
jectories were also observed in CHROMIUM OS. There are
no significant differences except the total periods in the dif-
fusion. To keep the conciseness, we will not plot them again.
The diffusion processes are generally quicker in LUCENE’s
network since it is smaller. We cannot rule out the possibility
that different network typologies and baseline trust distribu-
tions also contribute to the difference in the speed of diffu-
sion. However, they are beyond the scope of this paper.

First of all, cheap talk is still important. Almost all diffusion
curves start with a relatively flat part (see figure 8). During
these periods, agents are most likely to switch to cheap talk
first. It is natural to be safe after realizing your neighbors have
not been cooperative. Then, the trajectories become fairly di-
verse and non-classic with the increase of baseline trust’s in-
fluence. When c = 0, the majority of diffusions exhibit the
classic S -curve [1]. However, more diffusion trajectories ap-
pear with the increase of c, which indicates that baseline trust
diversifies trust and cooperation’s diffusion. It is reasonable
for introducing the influence of baseline trust to make the pay-
off structure personalized and no longer static (see equation 1
for reference).

Perhaps the most surprising trajectory is that which exhibits
a “staged” pattern (figure 8.f). We examined the detailed pro-
cess behind these patterns and noticed a few highly “distrust-
ful” individuals cause the “platforms” in the diffusion trajec-
tories. The process is stuck and only moves forward after they
“mistakenly” change their behavior; it becomes exhaustively
long. There are not many processes that demonstrate this tra-
jectory; however, its frequency becomes non-trivial when c
is large (c → 1). Compared with other patterns, this pattern
is less investigated. Even in literature that documents several
non-classic diffusion trajectories [49, 50], the “staged” trajec-
tory is not covered. For the empirical network of LUCENE, all
trajectories are observed when c ≥ 0.5. For the empirical net-
work of CHROMIUM OS, all trajectories were observed when
c ≥ 0.4. This suggests that the critical value for the diffusion
process expresses that all trajectories may depend on the pro-
files of baseline trust distribution and the network.

The Effectiveness of Diffusion
Figure 9 shows the frequency of the individual simulation
process reaches a stable homogeneous trust state (full diffu-
sion) under different c. Both LUCENE and CHROMIUM OS
show similar patterns. An apparent pattern is that there are



RQs Proposition Key Point
RQ1 PROPOSITION I, II, & III When considering baseline trust, the simulation results show: (I) C-C is still important at

the beginning of diffusion and possible to be a long term stable strategy, and more diverse
diffusion trajectories appear in later phases, (II) diffusion is more limited when baseline
trust’s influence becomes substantial, and cheap talk becomes a stable strategy in the long
run, (III) the average speed of diffusion improves, while it varies more significantly.

RQ2 PROPOSITION IV, V & VI (IV & V) Both seeding strategies (seeding from the hubs and from the distrustful) posi-
tively influence the effectiveness and speed of diffusion. (VI) Using them together may
yield even better results.

Table 2. Summary of findings and corresponding research questions.

Figure 8. Different possible full diffusion trajectories on LUCENE network (c = 0.6). We pick the case of (c = 0.6) for it is large enough to allow the 1000
simulated diffusion processes exhibit all six trajectories. Each curve is a typical representative simulation for a subset of 1000 simulations which share
the similar trajectory.

fewer processes reaching full diffusion with the increase of
baseline trust’s influence. These processes often end with
hybrid states in which two or three strategies still exist. In
c = 0 situation, the majority of simulations achieve full dif-
fusion. However, when c = 1, almost 29% simulations reach
limited diffusion for LUCENE network, and around 37% for
CHROMIUM OS. The decrease of the diffusion’s effective-
ness may be non-linear (see figure 9). The full diffusion rate
drops faster when c is between 0.4 and 0.6, which indicates
that there may be some qualitative change when c is in this in-
terval. Among those limited diffusion processes, we observed

the existence of Cheap talk-Cooperate (C-C) as a long run
stable state. That is because switching to cooperator becomes
less attractive for some individuals when the extra payoff is
offset by their idiosyncratic payoff related to baseline trust.

The Speed of Diffusion
Figure 10 shows the average number of periods (normalized)
to reach full diffusion10 in each condition. In figure 10, the
average speed of diffusion is faster with the influence of base-
line trust, although the improvements are not very significant.

10We ignored all limited diffusion simulations.



Figure 9. The change of frequency of full diffusion under different c.

Figure 10. The change of the number of normalized periods to reach full
diffusion under different c.

This may result from the fact that the majority of individu-
als have positive baseline trust in two projects. However, the
speed of diffusion varies much more significantly. We per-
formed a simple ANOVA test on the sample of full diffusion
in three conditions (c = 0, c = 0.5, and c = 1), and the results
suggest there are significant differences in the variances.

Summary of Findings
The main findings can be summarized as the following three
PROPOSITIONS:

PROPOSITION I: C-C is important at the diffusion pro-
cess’ outset. The diffusion of trust and cooperation ex-
hibits non-standard trajectories when baseline trust has
substantial influence on an individual’s subjective payoff
evaluation.

PROPOSITION II: The probability of a limited diffusion
of trust and cooperation becomes greater when baseline
trust substantially influences an individual’s subjective
payoff evaluation. Also, strategy C-C may become a sta-
ble strategy in the long run.

PROPOSITION III: Suppose the baseline trust has sub-
stantial influence, then the average speed of diffusion im-
proves if the majority of individuals have positive base-
line trust; however, the speed of diffusion varies more
significantly.

Baseline trust matters! PROPOSITION I, II, & III not only re-
confirm the importance of cheap talk but also illustrate how
baseline trust shapes the diffusion of trust and cooperation.
We performed sensitivity analysis on payoff structures. Un-
der the condition that the payoff from interaction is at the

same level of baseline trust, the results are robust enough
when punishment/compensation is comparable to cost.

Seeding Strategies
Seeding from The Hubs

Figure 11. Comparisons of between random seeding and seeding from
the hubs (frequency of full diffusion).

Figure 12. Comparisons of between random seeding and seeding from
the hubs (periods to reach full diffusion).

Figure 11 shows the influence of seeding from the hubs on the
effective development of cooperation and trust. Obviously,
this effect is more significant when baseline trust’s influence
is large (c → 1). Similarly, the speed of diffusion also im-
proves by using this strategy (see figure 12, and simulation re-
sults from both LUCENE and CHROMIUM OS networks show
the same patterns. Seeding from the hubs also helps to reduce
the uncertainty about how long it takes to reach full diffusion
in the worst case.

Seeding from The Distrustful
The second seeding strategy examined in this study is seeding
from the distrustful. The simulation results suggest it is also
an effective and efficient way to improve the diffusion of trust
and cooperation. Figure 13 shows that for both networks,
seeding from the distrustful always brings better than random
results for almost all conditions. The only exception is c =
0.2 for LUCENE network. For the speed of diffusion, figure
14 indicates the exactly same patterns.

Joint and Independent Effect
There may be some correlations between “hubs” and “the dis-
trustful” (see figure 7). The distrustful may be slightly more
likely to appear in the hub positions, which is why we do not



Figure 13. Comparisons of between random seeding and seeding from
the distrustful (frequency of full diffusion).

Figure 14. Comparisons of between random seeding and seeding from
the distrustful (periods to reach full diffusion).

simply put the term “Ceteris Paribus” in PROPOSITION IV
& V. Due to the restrictive empirical network structures, we
cannot fully evaluate their effects independently. However, it
is reasonable to assume that “seeding from the distrustful” has
at least a moderate level of independent positive effects. Intu-
itively, for example, when c = 1, seeding from the distrustful
yields better results on both the effectiveness and speed of dif-
fusion. Therefore, there must be an effect resulting from the
independent influence of seeding from the distrustful strat-
egy. The independent effect of seeding from the hubs can be
established by similar arguments.

Summary of Findings
The main findings can be summarized as the following three
PROPOSITIONS:

PROPOSITION IV: The effectiveness and the speed of dif-
fusion improves when seeding from those in the hub po-
sitions.

PROPOSITION V: The effectiveness and the speed of dif-
fusion improves when seeding from those who are dis-
trustful. The effect becomes increasingly significant with
the higher influence of baseline trust.

PROPOSITION VI: The combination of both strategies
yields better results, although they both have independent
positive effects on the speed of diffusion.

Seeding strategy matters! PROPOSITION IV, V, & VI show
that using proper seeding strategy would help improve the
effectiveness and speed of the diffusion of trust and coopera-
tion. Although there are some correlations between the hubs
and the distrustful, both of them have independent impact.
Again we performed sensitivity analysis on payoff structures.
Under the condition that the payoff from interaction is at the
same level of baseline trust, the results are robust enough
when punishment/compensation is comparable to cost.

DISCUSSION

Discussion of Findings
The Implications of Diverse Diffusion Trajectory
The study reveals that the diffusion trajectory becomes di-
verse when considering individual variations on baseline
trust. One of the key challenges in CSCW research is to facil-
itate the diffusion of social and technical innovations within
the distributed team. Conventionally, researchers often as-
sume the successful diffusion of social and technical inno-
vations follows S-shape curve. The S-shape curve actually
reflects the importance of critical mass in accelerating the dif-
fusion process [48]. The diverse curve indicates that only fo-
cusing on critical mass may be neither sufficient nor efficient.
A few “powerful” or “extreme” individuals may be equally
important. Particularly, in the processes exhibiting a “staged”
pattern, almost all halts in diffusion are triggered by a few in-
dividuals who have extremely low baseline trust. Therefore,
identifying the “staged” pattern through simulation has par-
ticular value for CSCW research. This helps to identify the
major blockers of the diffusion. Then, researchers may de-
sign specific mechanisms (e.g., incentives, extra connections,
seeding, etc.) to overcome the negative effects of these indi-
viduals. Doing so before the initiation of innovations may im-
prove the efficiency and effectiveness while saving resources.

Moreover, the diverse diffusion trajectories also may lead to
rethinking the use of statistical techniques used in empirical
social network analysis. Currently, linear regression tech-
niques are widely used in exploring the relationship between
network attributes and the diffusion of innovation or other so-
cial constructs [34, 59, 68]. Since the subjects’ characteristics
may vary a lot in empirical data, non-linear regression models
may be a worthwhile alternative for CSCW researchers [40].
Applying such models may bring more insights and also help
to alleviate the validity concerns of using linear regression
techniques in social network analysis [27, 50].

The Role of Cheap Talk
As we mentioned before, there are only initial seeds using co-
operate at the very beginning. In the first few normalized pe-
riods, switching from defect to cheap talk is the mainstream
dynamic. Then, some individuals start to switch to cooper-
ate either directly from defect or indirectly. [66] reported that
cheap talk works as a catalyst in trust and cooperation de-
velopment, and tends to disappear gradually once trust and
cooperation are established. In general, this argument still
largely holds. However, there are two differences. First, [66]
requires that cheap talk achieves the majority at the global
level before the occurrence of switching to cooperate. In this
present study, this requirement becomes unnecessary. Under



some specific network structures (e.g., cluster or star) or spe-
cific composition of baseline trust, a local majority of cheap
talk, or even a single individual may lead to the emergence
of trust. Second, the cheap talk may not disappear. Since
some individuals may have very low trust, they may stay with
cheap talk and have no interest to cooperate. In this case, the
incentive (extra interaction payoff) may be not good enough
to offset their unwillingness towards cooperate.

Moreover, the role of cheap talk becomes even more signif-
icant yet more subtle. In the next subsection, we will show
that the establishment of trust may require very specific con-
ditions of distribution of cheap talk. Sometimes, it may re-
quire an individual to stay with cheap talk for a while to allow
his or her neighbors’ to develop trust first (see CASE 2 in next
subsection). To sum up, the role of cheap talk is much more
complicated than it seems to be. Future research is necessary
to uncover its influence.

Why Seeding from the Distrustful Works?
Our study reveals that seeding from the hub and seeding from
the distrustful are efficient interventions for developing team
level trust. Seeding from the hub is pretty straightforward be-
cause the hubs are usually more influential. It also has been
consistently confirmed by prior literature [4]. However, the
underlying mechanism why seeding from the distrustful is
also efficient is not very clear. Now we are going to con-
ceptually discuss the rationale of seeding from the distrustful.
In the following discussions, without loss of generality, let’s
assume c = 0.6 and use the other parameters as they are in
the simulation directly.

A

a. A is at a hub 
position

b.    A connects to a hub 

A A

c.    A has no relationship 
with a hub 

Figure 15. The possible positions for a low trust individual.

First, let’s consider an individual A who has very low baseline
trust (baseline trust = −1). In any social network, A may be
at a hub position (A@Hub, figure 15.a), connects to it (A ↔
Hub, figure 15.b), or has no relationship with a hub (A =
Hub, figure 15.c).

CASE 1: A@Hub

In this case, A connects to a number of other individuals.
Without loss of generality, let’s assume A has 8 links as shown
in figure 15.a to simplify the discussions. Among these 8
neighbors, x neighbors play C-C, y neighbors play cooperate,
and the rest (z) play defect. At the very beginning, A plays
defect. Now, let’s calculate how difficult for A to convert to
cooperate. First of all, let’s write the A’s expected utilities of

using three strategies using equation 1 and 2:

UA(C) =
2x + 2y + 0.5z

8
− c

UA(C −C) =
1.8x + 1.9y + 1.3z

8

UA(D) =
1.5x + 0.5y + z

8
+ c

(6)

Suppose c = 0.6, the utility differences between these three
strategies are:

UA(C) − UA(C −C) =
0.2x + 0.1y − 0.8z

8
− 0.6

UA(C −C) − UA(D) =
0.3x + 1.4y + 0.3z

8
− 0.6

UA(C) − UA(D) =
0.5x + 1.5y − 0.5z

8
− 1.2

(7)

In this case, switching from D to C-C requires very spe-
cific conditions to be satisfied. Let’s have a close look at
UA(C −C)−UA(D), it can be rewritten as 1.4y+0.3(x+z)

8 − 0.6 =
1.4y+0.3(8−y)

8 − 0.6 = 1.1y
8 − 0.3. To ensure it is positive (more

likely to switch), y must ≥ 3. So A has to wait at least 3 of
his neighbors playing C-C before he or she can actually give
up the defect strategy. It may take some extra steps. Anyway,
it is still possible for A to switch to C-C although it could be
slow and take many steps.

The real trouble happens when A tries to switch from C-C to
C. The maximal possible value of UA(C) −UA(C −C) is -0.4
when x = 8, y = 0, z = 0. Therefore, becoming cooperative
could never be better than using C-C. Suppose β = 10, ac-
cording to equation 4, the probability of switching from C-C
to C is: e14

e14+e18 =
1

1+e4 = 0.018 even when all A’s 8 neighbors
have become cooperator! Obviously, it is almost impossible
for A to switch from C-C to C. It is very likely that A will
get stuck with strategy C-C. The whole process hence cannot
reach all-cooperator state.

Let’s see what will happen if seeding from A. First, seed-
ing from A reduces the time waiting for its satellites to adopt
cheap talk. A will become a cooperator at the very begin-
ning, and keep using cooperator. Second, it also accelerates
the process for its satellites to be cooperative. For many of
its satellites may only connect to A, A becomes a cooperator
may immediately lead them switch to cooperate also.

CASE 2: A↔ Hub

In the second case, A only connects to the hub node. Let’s
assume the hub is still using defect. With the same parameters
in CASE 1, its expected payoffs are: -0.1 (cooperate), 1.3 (C-
C), 1.6 (defect). It would strongly prefer to be a defector.
The probability of switching to cooperate and C-C are 0 and
0.047 respectively. It is almost impossible to directly switch
to cooperate. We can expect it takes 1/0.047 ≈ 21 reviews to
switch to C-C. For an N-member team, this would take 21×N
periods on average. This would be extremely slow. If the hub
has already been a cooperator, A’s expected payoffs are: 1.4



(cooperate), 1.8 (C-C), 2.1 (defect). A’s best choice is still to
be a defector.

Only when the hub uses C-C, A will quickly switch to C-C.
However, since the hub’s strategic choice also depends on a
set of other individuals, it may not stay with C-C for a long
time. If A miss this short interval, A might get stuck in defect.

CASE 3: A= Hub

The discussion is very similar to above two cases; we omit it
to keep this section concise.

To sum up, the presence of A as an individual of extremely
low baseline trust is potential to cause significant delays or
even failures in all these three cases. Seeding from the dis-
trustful will avoid these low-trust individuals to get stuck with
their “preferred” defect strategy. Especially, when the dis-
trustful are at the hub, seeding from the distrustful will also
help to accelerate the process for its satellites to be coopera-
tive. The discussions for Case 1 also at least partially illus-
trates the benefits of using both seeding strategies.

Implications to Research
This work has implications for future research in distributed
collaboration and trust. First, we explore how baseline trust,
as an important individual characteristic, shapes the diffusion
of trust and cooperation in a social network setting. The state-
of-the-art social network research usually focuses on the as-
pects resulting from different positions of individuals, while
assuming individual nodes are as same as each other [61].
However, individuals differ in many aspects. They have var-
ious beliefs, preferences, and hence may behave differently
in social interactions [22]. Our work thus demonstrates the
importance of considering individual characteristics.

We developed a new way to conduct data-driven, agent-based
simulation study, which combines abstract, flexible simula-
tion and empirical, observational data collected from real-
world software projects. We demonstrate that it achieves both
methods’ advantages, allowing us to explore dynamics in in-
dividual and team level while keeping the results and findings
high relevant to practical applications. This method extends
the current simulation approach that is an important way of
knowing in HCI [47]. Researchers may leverage it in theory
development and empirical inquiry, since it produces empir-
ically testable hypotheses, especially for research targeting
complex, dynamic social and technical systems in which in-
dividual variations cannot be ignored.

Another contribution is the model itself, which represents ex-
tensible theoretical knowledge for understanding both how
people interact and influence each other in a social network,
and how their baseline trust influences their behavioral deci-
sions. Integrating these social theories into a consistent and
comprehensive model enables us to examine a rich set of fac-
tors together in a unified platform. Moreover, the model can
be extended by incorporating other social theories by simply
coding these theories to the decision rules. In developing the
infrastructure for the simulation experiment, we adapted, de-
veloped, and invented several methods to extract social struc-
ture and individuals’ baseline trust from team communication

records. Other theoretical and empirical studies may also ap-
ply the methods developed in this paper.

Implications to Practice
Some findings, especially our seeding strategy insights, can
be directly applied to distributed collaboration practices.
Prior research demonstrates how identifying team hubs and
investing more resources to help them adopt cooperation first
(seeding from the hubs) may be an effective and efficient way
to improve the diffusion process. This study confirms the use-
fulness of this strategy in empirical network settings. More-
over, we show that “seeding from the distrustful” is also an
effective strategy; one might even combine them to achieve
better results. Our study reveals that some individuals with
lower baseline trust may potentially block the progress of dif-
fusion. Therefore, another possible implication lies in design-
ing organizational communication networks to minimize such
individuals’ influence. This can be achieved by adding new
links between unconnected people; for example, connecting
A to C in figure 1 may avoid the negative influence of B, and
may eventually force B to switch to cooperate.

Design Implications
This study opens possibilities for designing tools that sup-
port team collaboration. The agent-based model can be ex-
panded and augmented with a rich user interface to serve as
a decision-making tool for GSE practitioners. By changing
the model’s parameters (e.g., payoff structure, social learn-
ing factors, etc), project managers and team leaders can
run “what-if” experiments to navigate the mechanism design
space and explore different scenarios, and evaluate the poten-
tial influences of decisions within the team’s context. In this
way, the team may be able to select the best mechanism, such
as a combination of different seeding strategies, to proactively
facilitate the teamwork process. The agent-based model is
dynamic, which enables tools based on it to identify the in-
fluence of a specific scenario, as well as develop insights into
the long-term consequences of complex social-technical pro-
cesses.

Threats to Validity
Construct Validity The main construct in this study is “base-
line trust,” which refers to an individual’s general, global ten-
dency in perceiving the trustworthiness of other individuals
(or other entities, such as organizations) [16]. It is a dimen-
sion of personality, yet we did not use traditional psychome-
tric approaches to assess it due to practical restrictions. We
adopted an unconventional method based on text analytics,
for which there is some early experimental evidence to con-
firm its validity [52, 62]. More evaluations in future will help
establish the confidence in this method.

The private conversations among developers may also influ-
ence the assessment of baseline trust. For LUCENE, the in-
fluence may be minimal for it is a pure open source project
and most of the developers communicate with each other only
through the public mediums. LUCENE also enforces that all
discussions should be logged and public. However, Google
has internal communication channels for their employees.
Therefore, for CHROMIUM OS, the influence of the absence



of private conversations may be significant. In general, the
extracted baseline trust may be slightly lower without consid-
ering the internal records. People tend to assume their col-
leagues are trustworthy because they often reason that their
colleagues are at least qualified to work in a prestigious soft-
ware development organization (Google) [2]. Shared identity
also enhances trust. These may be reflected by their word use
in interaction. However, for personality is relatively stable,
and the word use is largely unconscious [19], the extracted
baseline trust should be valid.

External Validity This study utilized empirical data from
two open source projects. We cannot guarantee that the re-
sults and findings of this study are generalizable to other
projects. However, replicating this study with different em-
pirical settings would inductively develop solid knowledge.
Researchers would become more confident in a theory when
similar findings emerge in different contexts [6]. However, it
is possible that the findings may be still valid for other open
source project, or even global software team in traditional or-
ganizations. There are a few reasons. First, we only con-
sider the “developers” who contribute the code, which enable
us to avoid the limitations and problems associated with the
hierarchical structure, “small-core and very-large-periphery”
distribution of work. Second, CHROMIUM-OS is a company-
driven open source project where many contributors are from
the same company but located distributively. It more or less
reflects the nature of distributed work in commercial software
development organizations.

Internal Validity There is no significant threat to internal va-
lidity. The empirical data used in this study are public com-
munication records that are collected and analyzed by com-
puter programs, and thus there is almost no human judgment
involved in the data collection, extraction, and cleaning pro-
cess. The agent-based simulation process is autonomous.
The agents’ position in the networks are derived from em-
pirical data, and we only specify the rules that are applied to
all agents without any manipulation on a specific individual
agent.

CONCLUSION
In this paper, we describe a study focused on identifying the
influence of individuals’ baseline trust on the diffusion of
trust and cooperation with the mediation of cheap talk over
the Internet. Using data from two large globally distributed
open source projects, we design and perform an experiment in
the form of a virtual simulation. Our results demonstrate that:
(1) cheap talk over the Internet is still important for the devel-
opment of trust and cooperation when considering individual
variations on baseline trust, (2) baseline trust impacts the dif-
fusion of trust and cooperation significantly, and yields very
rich and non-traditional diffusion trajectories, and (3) seeding
from the hubs and seeding from the distrustful positively in-
fluences the effectiveness and speed of diffusion. Combining
these together is likely to provide better diffusion of trust and
cooperation.

This research makes multiple contributions. First, the re-
search revealed the importance of considering individual vari-
ations on baseline trust and developed an understanding to-

wards the influence of baseline trust. Second, we developed
an extensible, theoretical model that can be applied in fu-
ture research investigating trust and cooperation dynamics in
GSE teams. Third, the study provides ready-to-use sugges-
tions (i.e., seeding strategies) for managing collaborations in
GSE. Finally, we developed a data-driven, agent-based mod-
eling and simulation approach, integrating it with observa-
tional, empirical data. This integration has great potential to
help CSCW researchers to develop flexible, rigorous, and rel-
evant theories. For the future, we will continue our efforts
on investigating collaborations in GSE team with data-driven,
agent-based modeling and simulation approach. We will ex-
plore the integration of dynamic network to enable the co-
evolution of trust and network structure [58, 57]. Moreover,
trust is a complex construct that can be influenced by many
factors [51]. One limitation of this study is that we have not
considered these factors. We plan to extend our research to
incorporate more social and organizational factors, for exam-
ple, social identity, cultural background [71], organizational
constraints [43], etc. The simulation infrastructures devel-
oped in this paper can be easily adapted to incorporate them
in future.
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