
New Opportunities for Extracting Insights from Cloud
Based IDEs

Yi Wang1, Patrick Wagstrom2, Evelyn Duesterwald2, David Redmiles1

1 Department of Informatics, University of California, Irvine, CA 92697
2 IBM T. J. Watson Research Center, Yorktown Heights, NY 10598

1 {yiw, redmiles}@ics.uci.edu
2 {pwagstro, duester}@us.ibm.com

ABSTRACT
Traditional integrated development environments (IDEs) pro-
vide developers with robust environments for writing, test-
ing, debugging, and deploying code. As the world becomes
increasingly networked and more services are delivered via
the cloud, it is only natural that the functionality of IDEs
be delivered via the cloud. In addition to simplifying the
provisioning and deployment of new IDE features, and mak-
ing it easier to integrate with other web native tools, cloud
based IDEs provide some fundamental advantages when it
comes to understanding the behavior of a wide community
of software developers. One of these advantages for the IDE
provider is the ability to transparently monitor and analyze
the real-time fine-grained actions of a large number of de-
velopers. In this paper, we explore how to leverage these
transparent monitoring capabilities of cloud based IDEs to
develop advanced analytics to understand developers’ be-
havior and infer their characteristics. We demonstrate the
feasibility of this research direction with a preliminary study
focusing on the way that source code files grow for different
developers, development tasks, and skill levels. We then an-
alyze the trends of source code file growth and find growth
is more similar within subjects than within tasks.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments

General Terms
Human Factors, Measurement

Keywords
Cloud based IDE, fine-grained data, analytics, JazzHub

1. INTRODUCTION
The era of cloud computing is upon us. According to

the 2013 Eclipse Community Survey[1], 53% developers have
developed or deployed cloud based applications, more than

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31-June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2768-8/14/05 ...$15.00.

doubling the 2012 rate of only 21%. However, to this point
much of the attention on cloud based applications has fo-
cused on deployment, execution, and management of appli-
cations, sometimes called devops. With nearly ubiquitous
access to the internet, and the variety of devices, laptops,
tablets, and phones, that can support rich applications, we
assert that the next mainstream software development envi-
ronments will be cloud based IDEs, such as JazzHub [7].

These cloud based IDEs provide a number of advantages,
as they are web native they can take advantage of the rich
opportunities afforded by the client-server model of web ap-
plications. These advantages include for example, automatic
saving and backup of code, real time pair programming
across a distance, and the ability to harness a huge number
of backend computers to perform tasks, such as build and
search, that previously were done on the desktop. These
IDEs make the development process truly scalable and flex-
ible: no installation on the desktop is required, potential
collaborations among unlimited numbers of developers is en-
abled, and maintenance is greatly simplified as new versions
can be automatically provisioned to all users.

Cloud based IDEs also provide another great advantage
for developers, managers, tool builders, and researchers alike:
they provide a centralized point for the transparent collec-
tion of data related to the software development process.
Thanks to improvements in JavaScript and underlying com-
munications protocols such as WebSockets, which allows for
every keystroke on a web page to be easily sent back to a
server, and WebRTC, which allows for video and audio to
be sent directly from the browser to the server, it’s possible
to see, analyze, and perhaps even understand every action
that users take while developing software. This unprece-
dented transparency enables us to extract insights about
the behavior of the IDE’s developer community that can
be exploited in many new and novel ways. Developers may
be provided with relevant and real-time assistance based on
not only their own behavior but also based on leveraging
the experience of the entire developer population. Develop-
ment managers may gain new insights about individual and
team contribution and finally, the IDE may leverage real-
time insights about actual tool and feature usage and user
experience to improve future versions of the IDE.

This paper presents an example of how to develop ad-
vanced analytics by leveraging the transparency provided by
cloud based IDEs, which can be further used to understand
developers’ behavior and infer their characteristics. We de-
veloped a concrete example to demonstrate the feasibility
of this approach. In this example, we focused on a specific

type of fine-grained data, the way that developers add and
remove individual characters to and from source code, which
usually cannot be easily measured and recorded at this fine-
grained level in a transparent fashion for large numbers of
developers. After collecting data in a controlled experiment
with IBM JazzHub1, we used time series analysis to study
the data. The analyses reveal a set of interesting results,
e.g., source code growth traces are significantly more similar
within the same developer than the same task. Implications,
limitations and future work is also discussed.

2. NEW OPPORTUNITIES

2.1 Prior Work
Collecting a developer’s actual sequence of user interac-

tions with development tools is crucial for understanding
developer behavior as well as task characteristics. A record
of actual user interactions can be used to create a “work
context” of the user’s behavior. These work contexts enable
tool designers to provide more relevant support by providing
the information users need at their fingertips. Early work in
this area by Murphy et al. investigated how different Eclipse
features were used by Java developers [9]. Their work was
extended from monitoring feature usage to constructing task
contexts for making recommendations [5, 6] and identifying
developer attributes [4]. Other work developed metrics from
monitoring programming activities in order to predict soft-
ware defects [8]. There has been a large body of similar work
but almost all of these studies require access to the client to
install additional instrumentation in the IDE, and the anal-
yses are typically based on coarse-grained, high-level actions
(e.g. ”use refactoring function”, ”read code”). The lack of
transparency in the data collection may influence a devel-
oper’s natural behavior while the focus on coarse-grained
information may limit the kind of analytics that can be ap-
plied. Cloud based IDEs bypass both of these problems by
enabling transparent collection of fine-grained user data.

2.2 Advantages of Monitoring Cloud Based IDEs
Cloud based IDEs fundamentally change the way we can

collect data about developer behavior as all user interactions
happen inside the web browser. We can passively monitor
server-side, by tracking the communication between client
and server using techniques such as IBM TeaLeaf. In con-
trast to IDE plug-in style activity monitors, such as Mylyn
[6], the data capturing does not require any client-side in-
stallation or instrumentation. As a result, instrumentation
and monitoring is less-invasive to normal user behavior. As
data collection happens in the background and data are pro-
cessed on a remote server, developers are usually unaware of
the fact that their interactions with the IDE are captured.

Another advantage of moving the monitoring control away
from the client and to the server is that monitoring has
several can easily be scaled up to large (in fact unlimited)
numbers of users. Monitoring efforts are no longer limited
to the select, and possibly biased, subsets of the IDE user
population whose IDE clients can be instrumented. The
user population of a cloud based IDE can become subject
to monitoring resulting in more diverse and more broadly
representative data. A proposed architecture for this style
of monitoring can be seen in figure 1.

1JazzHub: https://hub.jazz.net/

User's
Browser

Data
Analytic
EngineUser's

Browser

Cloud
Server

Passive
Monitor

Figure 1: Mass monitoring in a cloud based IDE.

2.3 New Possibilities in Cloud Based IDEs
The ability to transparently monitor large classes of users,

and even entire user population opens up new possibilities
for deep analytics. Large scale monitoring yields large rep-
resentative data sets that can be analyzed statistically for
the purposes of classifying and possibly even predicting be-
havior in a user community. Furthermore, cloud based IDE
monitoring can leverage the wisdom of the crowd to pro-
vide more advanced services to the IDE user. Consider the
example of intelligent code completion. Using a traditional
IDE, intelligent code completion systems can record the de-
tails of a developer’s activities and use the collected data
to make recommendations. While this method can make
use of an individual’s experience, it fails to utilize the cross-
experience of a large number of individuals. In a cloud based
setting intelligent code completion systems can have a server
component that passively captures data of not only a single
developer but of thousands of developers. This can fun-
damentally change how intelligent code completion systems
work. They can now include advanced analytic techniques
to leverage the experiences of mass populations [2]. For
example, time series analyses could be used for identifying
sequence patterns, or Bayesian inference for predicting de-
velopers’ future behaviors, etc.

Deep analyses of IDE user behavior can also provide valu-
able input to the IDE providers to continuously improve
the IDE based on an actual user behavior feedback. Data
on overall feature usage, which features are used together,
and the profiles of users most likely to use each feature can
be easily collected in a cloud based IDE. This allows IDE
providers to quickly the impact of feature adoption and to
be more responsive to user wants and desires.

3. CASE STUDY: UTILIZING FINE-GRAIN
-ED SOURCE CODE GROWTH DATA

We designed a controlled laboratory experiment as a proof-
of-concept to better understand the potential of transpar-
ent fine-grained behavior monitoring as made possible by
cloud based IDEs. In this study, we worked with JazzHub
to observe and collect fine-grained source code growth data
from a small pool of software developers. Users were given
a series of simple programming tasks and asked to develop
code in the editor integrated into JazzHub. We continuously
monitored the current size of the source code in the active
editor window by capturing all communication between the
browser and the JazzHub server while users were performing
these tasks. Source code growth could then be reconstructed
from the series of auto-save and explicit save events in the
browser/server communication. We analyzed the resulting
source code growth data with advanced data analysis tech-
niques to generate insights about the characteristics of dif-
ferent software developers, and their work patterns.

3.1 User Study Design
Subjects & Process. Our study used eight subjects who

were all IBM employees at the time of our study (seven were
summer interns, one was a recent hire). Although three pro-
gramming languages (JavaScript, PHP, and Python) were
offered, all subjects chose Python. Using a specially instru-
mented laptop that recorded all network connections and
the screen during the study, subjects used JazzHub to both
write and execute code. Each subject was asked to solve up
to eight problems, arranged in increasing order of difficulty.
The subjects were instructed to aim for completing as many
programming tasks as possible in the allocated time.

Evaluation. The performance of each subject was evalu-
ated and ranked. If a programming problem was solved, the
subject would receive basic credit for the problem. Bonuses
or penalties would be assigned if there were improvements
(such as a solution with superior runtime) or minor deficien-
cies (such as not handling corner cases or excessive runtime).
The best performer (subject 6) finished all 8 tasks, while the
worst performer (subject 4) only finished 3 tasks.

Extracting Code Growth Data. Source code growth
data was extracted from the saved HTTP conversations. We
enabled the JazzHub “autosave” function in the source code
editors, so that the browser would periodically use the PUT

method to update the server-side copy of the current source
file with the contents of the local web browser (approxi-
mately every 15 seconds during active editing of the file).
The PUT method’s headers contains the information of the
exact time of the PUT invocation and the length of the source
code file at that time. We extracted this information for each
task and represented the task’s source code growth traces as
a series of tuples < time, length >. The traces for different
subjects vary in length depending on the amount of auto-
save events and overall time spent on a task.

3.2 Analysis, Results, and Findings

3.2.1 What Does Code Growth Look Like?
When studying the code growth traces of individual sub-

jects, it is immediately apparent that code growth behavior
varies significantly between subjects, and even from task
to task. Our analysis can examine differences in more de-
tail. Figure 2 shows a comparison between the traces for
the first three programming tasks collected from the worst
performer (subject 4) and the best performer (subject 6).
There are pronounced differences in the overall length of the
individual code growth plots between the subjects (note the
difference in the scale). It is easy to see that there are signif-
icant differences in the shapes of these source code growth
traces. Subject 6’s source traces are very smooth and gener-
ally monotonically increasing. In contrast, subject 4’s traces
are erratic; with many quick increases, some drops, and long
plateaus. These shape patterns can help us gain insights
into the developer’s experience while they were program-
ming. Drastic drops imply code deletion indicating that
corrections or refactoring occurred. Plateaus suggest ”think
time” possibly because users were experiencing challenges
preventing them from making steady progress.

Based on a shape analysis of the collected code growth
traces in real-time, we may be able to provide live assis-
tance to developers according to the inference of their cur-
rent states. By computing the statistics of these patterns,
we may further identify characteristics of developers. In the

0 100 300 500

0
50

10
0

20
0

Subject 4 (Worst)

time (seconds)

co
de

 s
iz

e
(b

yt
es

)

0 20 40 60 80

0
10

0
20

0
30

0
40

0

Subject 6 (Best)

time (seconds)

co
de

 s
iz

e
(b

yt
es

)

Figure 2: The traces of the worst and the best per-
former. We only plot the best performer’s first 3
traces. Note: the scales of two plots are different.

next section we look at one such mechanism to statistically
evaluate code traces.

3.2.2 Cointegration Analysis
Cointegration is a time series analysis technique frequently

used in quantitative finance. Cointegration is better than
correlation as an indicator of how similar the shapes of two
time series are because correlation usually fails to indicate
shape similarities, especially, when these similarities are stag-
gered in time. Intuitively, if two time series are integrated,
they are unlikely to diverge over time [3]. Hence, we can
use it here to test the degree to which two different traces
have a similar general shape. In order to perform cointegra-
tion analysis, we first normalized the original traces to equal
length traces. We found that most traces had between 10
and 25 recorded samples, so we normalized each trace into
new 15-sample traces and used the differential value to re-
place the absolute value. This way, we obtained 41 new
traces that start from 0 and have 15 values each. For each
pair of normalized traces, cointegration was tested using the
Engle-Granger method [3], this generates a p value for each
pair of traces that represents the probability that two traces
are cointegrated. The analyses resulted in 820 statistics,
which can be represented by the lower triangle of a 41 × 41
matrix. If using p = 0.05 as the critical value, there are a
total of 217 cointegrated pairs.

3.2.3 Cointegration Network
In order to provide an intuitive view of the results, we

encoded the cointegration statistics into 0 or 1 according
to their significance. Thus, the cointegration matrix can
be viewed as an adjacency matrix of a network, as shown in
figure 3). In this network, each vertex represents a trace, and
there is an edge if two traces are cointegrated. In figure 3,
a label Sm.n represents subject ID m working on task n.

This network leads to several observations. First, an inter-
esting phenomenon is that the “best” developers (subjects 6
and 8, whose traces are represented by white dots in figure 3)
share fewer connections than the average. There are only
6 edges between them although they contribute 15 traces
(5.71% of all possible edges), while the other six subjects
have 112 inter-subject edges for 26 traces (34.46 % of all
possible edges). They are mostly located in the peripheral
part of the network of Fruchterman-Reingold layout. Their
positions actually indicate the shape of these traces are more
“unique” than the overall population of traces.

Given the small number of our sample, we cannot for-
mally establish this argument. But this preliminary results

S1.1

S1.2

S1.3

S1.4

S2.1

S2.2
S2.3

S2.4
S2.5S3.1

S3.2

S3.3

S3.4S3.5

S4.1
S4.2

S4.3S5.1

S5.2

S5.3

S5.4S6.1

S6.2

S6.3

S6.4

S6.5
S6.6

S6.7

S6.8

S7.1

S7.2
S7.3

S7.4

S7.5
S8.1

S8.2

S8.3

S8.4

S8.5

S8.6

S8.7

Figure 3: The cointegration network.

may suggest that the “best” or most experienced developers
might have more strategies in solving programming prob-
lems, which causes the traces they create to be more diverse.
In contrast, less experienced developers may follow only a
limited number of similar strategies to solve their problems,
making their traces more similar to each other. This can
be potentially used as an indicator in inferring developers’
skill level. Another interesting finding is that there is some
kind of “lag” effect between the traces of experienced de-
velopers and trace of developers with less proficiency. E.g.,
S6.4 connects with several other subjects’ traces of the first
task. The tasks were ordered by increasing difficulty so that
a more experienced developer may subjectively perceive the
difficulty of a higher numbered task similarly to how a less
experienced developers perceives the difficulty of the first
(easiest) task. The connections between S6.4 and several
first task traces from weaker performers suggest such a sim-
ilarity in subjective perceived difficulty.

3.2.4 Task Differences vs. Individual Differences
To understand to what extent we can characterize the

behavior of users from code growth traces we would like
to determine whether code growth traces are more similar
for a collection of users doing the same task, or for an in-
dividual user doing a collection of different tasks. To an-
swer this question, we compute the density of edges in three
categories: I: (subject-subject), II: (task-task), III: (task-
subject) for the network in figure 3. The results are: 1.
Category I: 0.3085; 2. Category II: 0.2479; 3. Category III:
0.2611. Obviously, the density of subject-subject edges is
higher. We further tested whether the differences are sta-
tistically significant using Kruskal-Wallis test. Edges in cat-
egory I are significantly more probable than the other two
(p(I,II) < 0.01; p(I,III) = 0.03). There is no significant dif-
ference between II and III. These findings indicate that the
shape a development trace is more unique to an individual
developer than it is the to the task at hand.

4. DISCUSSION AND FUTURE WORK
In this paper we’ve touched on some of the advanced pos-

sibilities of observing and analyzing developer behavior in
cloud based IDEs. We intend to continue to investigate
fine-grained actions of developers that can be extract and
analyzed in these environments. In particular, we are opti-
mistic that increased adoption of cloud based IDEs for tradi-

tional development tasks and the shift in the focal point used
for studying developer activity that this enables, as men-
tioned in section 2.3, will lead to a plethora of future anal-
ysis techniques. This shift provides unprecedented trans-
parency of the mass population’s development activities.
Thus, the scalability and reach of theses kinds of analyses
will be greatly improved. Given access to a suitable com-
munity and with suitable permissions we can now monitor
thousands of developers, rather than being confined to tra-
ditional studies of a handful of developers.

Possibly even more exciting is the fact that the central-
ized collection of this data allows information collected from
one user to be easily leveraged by other users in near-real
time. For example, consider an environment that is aware
of the methods used by all developers. Intelligent code com-
pletion options (e.g. intellisense) could be tuned to provide
only the most likely options across all users or across the
subset of users that bear substantial similarity to the cur-
rent developer. This can be furthered by the fact that even
complex calculations to provide assistance to the user can be
transparently transferred to other servers without the user
experiencing a decrease in performance.

This paper presents only a glimpse into the insights we
expect to gain about how developers work in cloud based
IDEs. As the community around JazzHub and other cloud
based IDEs grows we look forward to continuing our analy-
sis to get a better understanding of how developers work in
the real world and how the centralized collection and trans-
parency enabled by cloud based development environments
can provide the next generation of rich and productive en-
vironments for software development professionals.

5. ACKNOWLEDGEMENTS
This work is partially supported by NSF grant 1111446.

6. REFERENCES
[1] Eclipse community survey (2013).

http://wp.me/p1HAa-H9. Accessed: 2013-11-19.

[2] M. Bruch, E. Bodden, M. Monperrus, and M. Mezini.
IDE 2.0: collective intelligence in software development.
In Proc. FoSER 2010, pages 53–58, 2010.

[3] E. Chan. Quantitative Trading: How to Build Your
Own Algorithmic Trading Business. Wiley, 2008.

[4] T. Fritz, G. C. Murphy, and E. Hill. Does a
programmer’s activity indicate knowledge of code? In
Proc. ESEC/FSE 2007, pages 341–350, 2007.

[5] M. Kersten and G. C. Murphy. Using task context to
improve programmer productivity. In Proc. FSE 2006,
pages 1–11, 2006.

[6] M. Kersten and G. C. Murphy. Task context for
knowledge workers. In Proc. AAAI 2012 Activity
Context Representation workshop, 2012.

[7] J. Lautamäki, A. Nieminen, J. Koskinen, et al. Cored:
Browser-based collaborative real-time editor for java
web applications. In Proc. CSCW 2012, pages
1307–1316, 2012.

[8] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In. Micro
interaction metrics for defect prediction. In Proc.
ESEC/FSE 2011, pages 311–321, 2011.

[9] G. Murphy, M. Kersten, and L. Findlater. How are java
software developers using the elipse ide? Software,
IEEE, 23(4):76–83, 2006.

