
Noname manuscript No.
(will be inserted by the editor)

Cheap Talk, Cooperation, and Trust in Global
Software Engineering

An Evolutionary Game Theory Model with Empirical
Support

Yi Wang · David Redmiles

Received: date / Accepted: date

Abstract In our studies of global software engineering (GSE) teams, we found
that informal, non-work-related conversations are positively associated with
trust. Seeking to use novel analytical techniques to more carefully investi-
gate this phenomenon, we described these non-work-related conversations by
adapting the economics literature concept of “cheap talk,” and studied it using
Evolutionary Game Theory (EGT). More specifically, we modified the classic
Stag-hunt game and analyzed the dynamics in a fixed population setting (an
abstraction of a GSE team). Doing so, we were able to demonstrate how cheap
talk over the Internet (e-cheap talk) was powerful enough to facilitate the
emergence of trust and improve the probability of cooperation where the pun-
ishment for uncooperative behavior is comparable to the cost of the cheap talk.
To validate the results of our theoretical approach, we conducted two empirical
case studies that analyzed the logged IRC development discussions of Apache
Lucene1 and Chromium OS2 using both quantitative and qualitative meth-
ods. The results provide general support to the theoretical propositions. We
discuss our findings and the theoretical and practical implications to GSE
collaborations and research.

Keywords Cheap talk · Trust · Cooperation · Communication · Global
Software Engineering (GSE) · Evolutionary Game Theory (EGT) · Apache
Lucene · Chromium OS

Y. Wang
Department of Informatics, University of California, Irvine
Tel.: +1-949-3964587
Fax: +1-949-8244056
E-mail: yiw@ics.uci.edu

D. Redmiles
Department of Informatics, University of California, Irvine

1 Lucene: http://lucene.apache.org/
2 Chromium OS: http://www.chromium.org/chromium-os



2 Yi Wang, David Redmiles

If a deer was to be taken, every one saw that, in order to succeed, he
must abide faithfully by his post: but if a hare happened to come within
the reach of any one of them, it is not to be doubted that he pursued it
without scruple, and, having seized his prey, cared very little, if by so
doing he caused his companions to miss theirs.
-Jean Jacques Rousseau: On the Origin of the Inequality of Mankind,
The Second Part, 1754.

1 Introduction

You are chatting with a remote colleague on Facebook Messenger, sharing
several photographs of last night’s homemade dinner. You are so focused that
you fail to notice your manager standing behind you. Your manager becomes
angry, yelling: “Stop your IM! It’s wasting work time.” This is a common
reaction for most managers when they see employees using working hours
to chat online about something irrelevant to the job. Conventional wisdom
claims that such informal, non work-related communications, referred to in
some Economics literature as cheap talk, is meaningless and a waste of valuable
time! Indeed, economists Farrell and Rabin (Farrell and Rabin, 1996) claim
that cheap talk “does not generally lead to efficiency.”

However, our study finds that cheap talk in work environments may in
fact have surprising benefits. Previously, we conducted intensive field stud-
ies of Global Software Engineering (GSE) teams, focusing on their trust of
remotely-located collaborators (Al-Ani et al, 2013). The data we collected re-
veals that those who engage, in their cross-site communication with remote
collaborators, in “cheap talk,” i.e., non-work-related conversational behavior,
generally have higher trust (see Section 2). Many interviewees indicated will-
ingness to spend extra effort or sacrifice some work time for cheap talk when
interacting with remote collaborators. Trust is important for collaborating
with unfamiliar remote GSE collaborators. If an individual decides to cooper-
ate, she actually faces the risk of others’ uncooperative behaviors. To overcome
the fear of this risk, she needs to be confident in also expecting others to be
cooperative. Thus, it is difficult for trust to automatically emerge (Camera
et al, 2013; Jarvenpaa et al, 2004). It seems that cheap talk (even with some
extra cost) is quite helpful; however, its role in the dynamic trust emergence
and development process is unclear.

Proceeding from the result that small cost cheap talk over the internet
correlates with higher trust, we can hypothesize that it also brings about
better cooperation. We seek to investigate this question from a novel cost-
benefit perspective (rather than, for instance, a social relationship perspective)
in order to precisely and dynamically describe individuals’ strategic behavior.

First, we use Evolutionary Game Theory (EGT) as the major theoretical
tool. Enabling us to analytically study interpersonal cooperation dynamics, it
provides insights into, and techniques for, exploring individual strategic be-
haviors and social group interaction trends (Nowak, 2006b). Leveraging EGT,



Cheap Talk, Cooperation, and Trust in Global Software Engineering 3

we can examine how cheap talk over the Internet influences interactions be-
tween GSE practitioners and potentially gives rise to the emergence of trust, as
well as, in the long run, cooperation. Moreover, EGT can describe team level
dynamics by predicting the proportions of members using different strategies.

The Stag-hunt game, which was introduced by Rousseau (see the prologue),
is a natural description of mutual cooperation (Skyrms, 2008), and can be used
as an abstract description of GSE collaborations. We modify its classic form
and add a new strategy3 (“cheap talk-cooperate4”) to associate cheap talk over
the internet with concrete cooperation. With the modified game, we describe
the dyadic interactions among team members, enabling players to update their
strategies through social learning.

Using this approach, we can investigate the following research questions
(RQs):

RQ1 : Can cheap talk-cooperate self-reinforce if it is secured by situation-
intrinsic incentives?

RQ2 : Can trust emerge and eventually become a cooperation-ensuring team
convention if defectors’ punishment compares to the cost of cheap talk?

RQ3 : What are the long-term dynamics (including frequency) of using cheap
talk, particularly as cooperation and trust are established over time?

Then, to validate the results derived from our theoretical model, we per-
formed two empirical case studies on Apache Lucene and Chromium-OS by
mining their logged IRC discussions. Our analyses provided general support to
the theoretical results and predictions. For example, we observed consistency
between cheap talk and cooperation development, their precedence relation-
ship, and cheap talk’s disappearance in the long run. From a methodological
perspective, this study demonstrates the feasibility of a novel approach, which
integrates theoretical game theory analysis with empirical study to develop
relevant and generalizable GSE knowledge.

The remainder of this paper is organized as follows. Section 2 briefly intro-
duces the prior empirical study motivating the present work. Section 3 intro-
duces the Stag-hunt game, and related GSE research on cheap talk and trust.
Incorporating the results presented in (Wang and Redmiles, 2013), Section 4
elaborates on the evolutionary game theory model, and Section 5 presents the
theoretical analysis and results, respectively. Two empirical case studies into
the development IRC discussions of Apache Lucene and Chromium-OS are
presented in Sections 6 and 7 to validate the model and its analytical results.
Finally, Sections 8 and 9 respectively discuss related issues and conclusions.

2 A Motivating Empirical Example

While investigating trust in distributed teams, e.g., (Al-Ani et al, 2013), we
found rich evidence of user’s favorable attitude toward and frequent use of

3 In game theory, a strategy refers to a pre-defined action that a player may use in
interacting with other players.

4 We will use C-C to denote Cheap talk-Cooperate in the reminder of this paper.



4 Yi Wang, David Redmiles

Fig. 1 Collaborators engaging in cheap talk express higher trust levels compared to those
who do not. The horizontal bold line in each box represents the median value.

cheap talk during interactions with remote colleagues. Moreover, we noticed
an association between cheap talk and trust. When we interviewed software
developers in distributed teams, some of them reported that non-work-related
cheap talk helped build trust. According to the interviewees’ narratives, we
found that cheap talk had potential, for instance, for building common ground,
developing close interpersonal relationships, and dealing with cultural differ-
ences. One interviewee emphasized cheap talk’s trust-building role as follows:

Yes, I think it’s critical [for building trust]. We do try to bring people
over at key planning junctures or transfers of technology. So some of the
Poland engineers were here in early Q1 for cross training. A couple of
them are here this week. I took them out for beer [and] laughs last week.
One thing we do is we have a quarterly, we call it off site, where we
just go out and do a social activity for team building. So that happens
every quarter. When we have visitors we try to do something social in
addition to the planning.

In a GSE setting, as opposed to the face-to-face context, it is difficult to
maintain “real world” cheap talk at a satisfying level. However, collaboration
tools allow for the adaptation of cheap talk over the Internet. The interviewees
mentioned that they spent extra effort and time on non-work-related activi-
ties via various tools, such as casual talk over IM, sharing personal pictures,
and discussing hot topics. For example, one interviewee reported a preference
for instant messaging, and another described the type of cheap talk afforded
through remote online communication, and how it can be used in collabora-
tion.

Example 1. ...but I like instant messaging. Mainly because with instant
messaging you can put in little characters like a smiley face or a wink
or something like that. I like that.
Example 2. Well, first time I am talking with someone, well, “Where are
you calling from? Oh.” Because maybe we are in different time zones,
at home or whatever. “What’s the weather like?” I mean, “Oh, is it
hard to have to work at home in the evenings?” to maybe build up some



Cheap Talk, Cooperation, and Trust in Global Software Engineering 5

sympathy. “Is it hard for you because you have to call in, in the evening
to talk with us?”

However, some interviewees did not express any interest in cheap talk with
remote colleagues, and in fact considered cheap talk valueless. Based on their
opinions on cheap talk, the interviewees were coded into two categories (non-
Cheap talk and Cheap talk). We also computed each individual’s average trust
score towards their collaborators. During the interview, each interviewee was
asked to locate her collaborators on a trust spectrum, which was then coded
into a 5-level interval scale to produce her aggregated trust score. In total, 43
interviews were collected. However, 2 of these were incomplete and did not
include a trust score. Thus, in the end, we coded and analyzed 41 of these,
classifying 9 as non-Cheap talk and 32 as Cheap talk.

To identify whether there was a difference between these two categories,
we performed a simple independent sample t-test. The results showed signif-
icant difference between these two groups’ trust: P-value: 0.013, Effect Size:
0.921 (Cohen’s d), and hence significance at the 0.05 level, while the effect
size indicates the sample size is sufficient. The interviewees in the Cheap talk
category exhibited higher trust (mean: 4.152) than those in the non-Cheap
talk category (mean: 3.607). Fig. 1 illustrates the results.

3 Background

3.1 Prior Empirical Research on Cheap Talk in Software Engineering

Building on the literature in non-work social workplace interactions, we first
introduced the formal concept of cheap talk5 in software engineering in a pre-
vious paper (Wang and Redmiles, 2013). Social interactions in workplaces are
usually conceptualized in terms such as “socialization” (Dittrich and Giuf-
frida, 2011), “small talk” (Cassell and Bickmore, 2003; Steed et al, 2003), and
“water cooler” (Herbsleb et al, 2002), and their importance has been noted in
(Ducheneaut, 2005). Dittrich and Giuffrida (2011) identified socialization as
one of four usage dimensions of Instant Messaging in their qualitative study
of a Danish/Indian global software team. They found that a few of the Skype
chats were purely social, such as everyday chats around the water cooler in
co-located settings, and argued that informal communications provide a chan-
nel for building trust and social relationships. However, they neither explained
why the social chats helped to build trust, nor did they assess the measurable
influence on the cooperation. Similar results were also reported by Cramton
and Hinds (2007), who argued that casual interactions smoothed the cooper-
ation among individuals from three different cultures.

Guzzi et al (2013) reported on a qualitative study of the Lucene mail-
ing list focusing on the communication patterns of open source developers.

5 Cheap talk in Economics usually assumes a zero cost; however, in our usage , we allow
cheap talk to associate with non-zero, yet minimal cost.



6 Yi Wang, David Redmiles

Three of their four “social interaction” categories were work-related and only
one (“social norm”: 3 in 506) had nothing to do with work. The other three
(“acknowledgement of effort,” “coordination,” and “new contributors”) were
at least partially related to work, as their labels suggest. In general, software
engineering researchers are beginning to pay more attention to how personal
and affective factors influence collaboration in the development process. Some
preliminary work by Calefato et al (2013) demonstrates that informal infor-
mation from social media can augment social awareness and improve trust.

3.2 Moving Toward A Novel Perspective and New Approach

Prior studies reviewed above emphasize the role of a “social relationship” in
informal interactions (see also (Mislin et al, 2011)). However, the concept of so-
cial relationship cannot fully explain an individual’s strategic choice, nor how
a communication strategy evolves into a team level norm. Adapted from the
Economics literature, cheap talk affords us a unique cost-benefit perspective
on studying non-work-related interactions among developers, and enables us
to use a variety of analytical techniques. Whereas economists develop Evolu-
tionary Game Theory (EGT) models to generatively explain social behaviors,
software engineering researchers are accustomed to using empirical field stud-
ies to develop practice-oriented knowledge. With the goal of developing rigor-
ous, elegant theoretical explanations and predictions (which EGT does well),
while maintaining the validity and relevance of theoretical results (which em-
pirical field studies can accomplish), our study uniquely combines these two
approaches.

By leveraging EGT techniques, we can dynamically investigate the strate-
gic interactions among a fixed number of individuals (an abstraction of a
“team”), as well as derive analytical results and predictions for describing
long-term individual strategy changes and team dynamics. Descriptive studies
focusing on social aspects are more static and often fail to characterize team
level dynamics. Furthermore, with simple assumptions (the Stag-hunt game
and strategic behavior change rule), EGT enables us to deductively establish
propositions to answer “how” cheap talk influences trust and cooperation. We
can then use empirical study to validate these generatively-developed proposi-
tions, which forms the integrated process of scientific knowledge development
that ensures both rigorousness and relevance (Montuschi, 2003).

3.3 Game Theory and Group Dynamics

Game theory provides a framework to analytically model and investigate
decision-maker strategic interaction situations, in which each participant’s util-
ity for the outcome depends on both individual and overall team decisions and
relative positions (Easley and Kleinberg, 2010). Game theory has been suc-
cessfully applied in many research areas to model people’s strategic decision-
making and the long term dynamics of their interactions. Game theory has



Cheap Talk, Cooperation, and Trust in Global Software Engineering 7

been successfully applied in various research areas (Bowles and Gintis, 2011),
including Political Science, Management, Sociology, Computer Science, Net-
work Science, and even Professional Sports management (e.g., Chiappori et al
(2002) on penalty kicking in French and Italian professional soccer leagues).

We can apply game-theoretic analysis to settings in which individuals can
exhibit different forms of behavior. Doing so enables us to identify which forms
of behavior have the ability to become stable norms in the group after long-
term interaction; this type of analysis is evolutionary game theory (EGT).
The key insight of EGT is that different types of behavior may bring differ-
ent benefits to the individuals in a group, making some individuals become
more successful. Hence, these successful individuals have some evolutionary
advantages, i.e., in the long run they consistently receive better results. Other
individuals may also learn these successful behaviors. Eventually, some behav-
iors become a group social norm.

Organizations are coordinated action systems comprising individuals and
groups with differing preferences, information, interest, and knowledge (March
and Simon, 1993). In essence, an organization is (1) a multi-agent system,
with (2) identifiable boundaries and structures, as well as (3) system-level
goals, toward which (4) the constituent agents are expected to individually
or collectively contribute by interacting with others (Puranam et al, 2014).
Game theory social network models reflect these organizational essences, only
requiring a few assumptions. Researchers can easily validate its conditions and
evaluations in experimental and natural settings (Gintis, 2000). For example,
Banerjee et al (2013) modeled the behaviors and relationships among individ-
uals in a microfinance network, and empirically validated it with data from
a rural Indian village. The results directly modeled the characteristics of a
strong microfinance network, and, moreover, provided insight into how one
might design a sustainable one. At the individual level, game theory can help
determine optimal interpersonal interaction strategies. Jackson et al (2012)
employed similar techniques to investigate the robustness of the informal ex-
change of favors among a society’s members.

3.4 Stag-Hunt Game

The classic Stag-hunt game is a non-zero-sum, 2 by 2 game in which each
player has two strategies: cooperate or defect (see Fig. 2). In ancient times,
two men hunt for food. If both use defect, they would hunt individually, and
each would get a hare. If both cooperate, they could kill a stag, and each
would receive one half stag. If one cooperates while the other defects, the
“cooperator” would receive nothing and the “defector” would receive a hare.
Formally, the Stag-hunt game’s payoff structure can be represented by the first
matrix in Fig. 3 if R > T > P > S. When a player uses C in interaction, she
receives R (Cell11 if the other player uses C ; and S (Cell12) if the other player
uses D. When she decides to play D, she receives T (Cell21) if the other player
uses C ; and P (Cell22) if the other player uses D.



8 Yi Wang, David Redmiles

Fig. 2 A visual illustration of the Stag-hunt game, Licence: CC BY-SA3.0, Credits to
C.Jensen & G. Riestenberg Jensen and Riestenberg (2012).

Even in the Economics literature, the Stag-hunt game is generally less
applied than prisoner’s dilemma in investigating the evolution of human coop-
eration. However, it is a better and more natural representation of real world
cooperation (Skyrms, 2001). The most significant advantage of the Stag-hunt
game is that it allows “cooperation” to be achieved by rational individuals
while an individual’s only choice in prisoner’s dilemma is defect. In Stag-hunt,
(cooperate; cooperate) is a Nash equilibrium 6. Because once both parties agree
to cooperate, none has the intention to defect. But (cooperate; cooperate) is not
the only equilibrium. When players don’t trust each other, neither wants to
cooperate and they would keep using defect. cooperate is not strictly domi-
nated by defect in this game. The state of (cooperate, cooperate) is a payoff-
dominated equilibrium (everyone gets the best payoff), while (defect, defect) is
a risk-dominated equilibrium (everyone minimizes potential loss). Which one
can be achieved is determined by players’ belief in their opponents: namely,
their trust (Skyrms, 2001).

3.5 Software Development as Stag-Hunt

The Stag-hunt game is a natural metaphor of dyadic (one-to-one) collabora-
tions in software engineering activities. In this paper’s scope, the cooperation
is restricted to dyadic interactions to simplify the analysis and discussion.
Multi-individual cooperation can also be viewed as a series of dyadic inter-
actions (Skyrms, 2014). In many cases, developers do not necessarily need to
cooperate with others to get their jobs done (“receive a Hare as payoff”), even

6 Nash equilibrium describes a state that no one can achieve a better payoff by working
independently.



Cheap Talk, Cooperation, and Trust in Global Software Engineering 9

C D

C

D

R S

T P

C D

C

D

2 0.5

1.5 1

a. Stag hunt game 
(R>T>P>S)

b. A numerical 
example

Fig. 3 Payoff structure of a general Stag-hunt game along with a numerical example.

when their work items are highly interdependent. However, less cooperation
may influence their work’s quality. Cataldo et al (2008) pointed out that the
communications among developers can significantly influence the quality of a
software system, even though work items can be independently finished. Thus,
collaboration can produce higher quality work (“receive a half Stag as pay-
off”). In some cases, a software engineer may believe that her colleague will
cooperate, but things do not go as she expects. Thus, she may experience some
“unfavorable” results (e.g., fail to deliver a commitment on time) due to the
other’s defection, while the other is still able to achieve the utility of individual
action (“receive a Hare as payoff”). Hence, dyadic collaboration in software
development can be analogous to Stag-hunt, allowing us to use standard EGT
techniques to investigate software development collaborations.

3.6 From Individual to Team

A 10-member team

Cooperator

Defector

Alice

Fig. 4 A 10-member team where 5 members are cooperators, 4 members are defectors, and
Alice hasn’t decided.

We have shown that the collaboration between two individual software
developers can be abstracted to the Stag-hunt game. Now, we generalize it to
the team setting. Fig. 4 shows a configuration of a 10-member team in which
5 members are cooperators, 4 members are defectors, and 1 member (Alice) is
undecided. Let’s assume Alice is going to decide her strategy in this setting.



10 Yi Wang, David Redmiles

The probability for her to meet a cooperator is 5 in 9, whereas the probability
of meeting a defector is 4 in 9. So, her expected payoffs are as follows:

Being a cooperator: R× 5
9 + S × 4

9 = 2× 5
9 + 0.5× 4

9 = 1.33.
Being a defector: T × 5

9 + P × 4
9 = 1.5× 5

9 + 1× 4
9 = 1.27.

Obviously, being a cooperator is more attractive for Alice, and she might
decide to cooperate in the subsequent interactions. The defectors may also
learn that being a cooperator may be better for them and, eventually, all
become cooperative. This is an ideal case. Sometimes, the majority of team
members are defectors, in which case defecting would be more attractive.

Therefore, the proportion of cooperators in a team characterizes the col-
laboration in a team. The change of the proportion of cooperators can be
expressed by EGT. Hence, we can analytically identify whether or not a team
has the potential to reach a set of desirable states in which most individ-
ual members become cooperators. Core members in a software project team
are often stable, or exhibit only small changes (Caglayan et al, 2013). Even
when the turnover is high, the team size is not likely to drastically increase
or decrease. Therefore, we need to investigate human interaction in software
development teams under the assumption of a fixed population7. In a fixed
population game with two strategies {A, B}, an increase of individuals using
strategy A will definitely lead to a decrease of individuals using strategy B. No
strategy switch is independent. Therefore, evolutionary dynamics in a team of
finite size requires a stochastic theory (Ficici and Pollack, 2000).

3.7 Trust Is Crucial!

To study the long-term interaction, fixed population game, Nowak et al. devel-
oped new techniques using stochastic process methods (Fudenberg and Imhof,
2006; Nowak et al, 2004) (see Section 5), yet the results remained similar; both
“all-cooperate” and “all-defect” were quite stable. For the numerical example,
the time spent on both homogeneous states is almost the same in the long run,
while the probability of switches between them are fairly small (Young, 1998).
What would make people willing to expose themselves to the risk of others’
possible defection? The answer is very straightforward: their trust of others.
With trust, they can expect their colleagues will also behave cooperatively
when they are cooperative (Al-Ani et al, 2013).

4 New Stag-Hunt Game with Cheap talk over the Internet

Given the discussion in the previous section, trust is crucial for the adoption of
a cooperate strategy. But, the classic Stag-hunt game does not guarantee the

7 The fixed population assumption does not exclude the change of a team’s size and its
members. The term “fixed” only means the population has no potential to be infinite. In
fact, small changes do not influence the analytical results, see Nowak (2006a).



Cheap Talk, Cooperation, and Trust in Global Software Engineering 11

emergence of trust. The motivating example in Section 2 suggests that cheap
talk over the internet may help develop trust, which inspires us to extend
the classic Stag-hunt game to analytically explore the role of cheap talk in
trust and cooperation development. In this section, we develop a new game
that allows cheap talk to associate with cooperate to form a new interpersonal
interaction strategy.

4.1 Talk is Still Cheap, but NOT Free

A typical way to model cheap talk is to treat it as a cost free signal with no pre-
defined meaning. Imagine that you talk about your dog with your officemates
during lunch; you pay nothing for this type of conversation. Furthermore, al-
though irrelevant to your work, it does convey some kind of signal. These
signals gain meaning through the interaction progress, and thereby increase
the possibility and frequency of collaboration (Santos et al, 2011). However, in
GSE, cheap talk often occurs over the Internet via various collaboration tools,
such as IM. Cheap talk requires individuals to expend extra time and effort;
for example, one interviewee said he once intentionally stayed late in his office
to have some cheap talk with a new remote colleague over IM. Thus, while
not free, this type of interaction is cheap when compared to the benefits of
cooperation. In this sense, signal is no longer a good abstraction; cheap talk
is actually a concrete action rather than a cost-free signal, although it is still
cheap. We denote this type of cheap talk as “e-cheap talk.”

4.2 The Stag-hunt Game with Cheap Talk

To capture the essence of e-cheap talk, we make a slight change to the classic
Stag-hunt game. The new game has three strategies instead of two. To set up
an e-cheap talk over the Internet, the proposer must pay a small management
cost; e.g., two Lucene developers spent 20 minutes talking about the political
systems and their differences in the U.S. and Germany (see Section 6.3.1). We
reasonably assume that the cost is small compared to the benefits from the
cooperation (e << R). It may not be constant, but it is likely that the fluctu-
ations do not span different orders of magnitude. Furthermore, to simplify the
discussion, we suppose that players’ preferences remain consistent (i.e., there
is no execution noise). If a player decided to start e-cheap talk, she would use
the cooperate strategy in the following interaction. So, we add a new strategy
“Cheap Talk-Cooperate” called C-C and make the new game contain three
strategies {C-C,C,D}.

If two players chose C-C in their interaction, they would share the cost of
e-cheap talk, and thereby each could receive R-e/2 payoff. Note that, even in
cases in which only one pays the cost, the average payoff of playing (C-C,
C-C ) is still R-e/2 in the long run. If one plays C-C while the other plays C,
the first will pay the cost all by herself. Her payoff is (R-e, R). If a C-C player



12 Yi Wang, David Redmiles

C-C C D

C-C

C

D

R-e/2 R-e S-e+g

R R S

T-g T P

C-C C D

C-C

C

D

1.9 1.8 1.3

2 2 0.5

0.5 1.5 1

a. New stag hunt game with 
cheap talk.

b. A numerical example, e=0.2, 
g=1.

Fig. 5 The payoff structure of the Stag-hunt game with e-cheap talk and a numerical
example (e = 0.2, and g = 1). The differences between new game and classic stag hunt are
marked with red.

meets another D player, the second player may be punished for refusing to
cooperate after the first player showed some signal of cooperation8. We assume
that the punishment equals g. Meanwhile, the C-C player (let’s call her “cheap
talker” for convenience) receives a compensation. To simplify the calculation,
we assume the compensation is equivalent to the punishment. Thus, the payoff
of this interaction is (S+g-e, T-g). Retaining this part of the payoff structure
as it is in the classic form,9 Although assuming the punishment equals the
compensation is a common technique (Pereira et al, 2012), there may be cost or
even potential extra payoff associated with the punishment and compensation
process. We provide further discussions in APPENDIX A. Fig. 5 illustrates a
modified Stag-hunt game with e-cheap talk and a numerical example. For this
numerical example, “all-cooperate” is the only evolutionarily stable state in
an infinite population setting. However, how “all-cooperate” is achieved with
e-cheap talk is still unclear, and the result does not fit the fixed population
setting.

5 Theoretical Analysis & Results

To simulate the team setting, the new Stag-hunt game will be played by a fixed
number (N ) of players. Using the analysis technique to be introduced in Sec-
tion 5.1, we reveal the long-term dynamics of cooperation with a 100-member
team as an example, and conditions to enable long-term cooperation (see Sec-
tion 5.2). The findings provide answers to the research questions highlighted
in the introduction. First of all, let’s begin with a real world example.

8 Punishment may take many forms, e.g., reputation loss.
9 It is reasonable to assume that, in the classic game, the player who plays defect would

not be punished, since there is no reason for her to give up a risk-dominated strategy without
any hint of her opponent’s action.



Cheap Talk, Cooperation, and Trust in Global Software Engineering 13

5.1 A Real World Example

Consider a 10-member team, in which 7 players are defectors, while the rest are
cooperators. In classic Stag-hunt game, the team will inevitably reach a state
in which all its members defect. However, with the new strategy, a member
named Alice may consider switching from defect to cheap talk-cooperate. In
this case, she may not have enough confidence to trust others, but is willing
to try. For her, the expected payoffs are:

Being a cooperator: R× 3
9 + S × 6

9 = 2× 3
9 + 0.5× 6

9 = 1.
Being a defector: T × 3

9 + P × 6
9 = 1.5× 3

9 + 1× 6
9 = 1.17.

Being a cheap talker: (R−e)× 3
9 +(S−e+g)× 6

9 = 1.9× 3
9 +1.3× 6

9 = 1.5.

Obviously, being a cheap talker is quite attractive! Hence, her strategy switches
to C-C. Her success may be imitated by her peers, motivating them to also
switch to C-C. When cheap talkers become the majority, the advantage of
being a cooperator emerges, for cooperators do not have to pay the small
cost (e) of cheap talk over the internet. Therefore, it becomes possible for all
members to become cooperators.

5.2 Analysis Method

Now, we formalize the process described in the above example. We need a
formal analytical method in order to provide general solutions for describing
the process and studying its characteristics. Moreover, when a team is large,
the state space could be very large; the total state for a N-member team
is: N+2

2 ∗ (N + 1). For instance, there are 5151 total possible states for a
100-member team. Therefore, we may not want to examine them one by one.
Moreover, to reflect a player’s bounded rationality (Simon, 1991), it also allows
players to make a mistake with a small probability.

First, the above example can be described as a Markov process. At period t,
Alice has a chance to review her strategy. Her decision is based on the strategy
profile (the number of people using a specific strategy) of the current period.
In above example, the strategy profile is: [C: 3, D: 7 ]. After Alice changes her
strategy, the strategy profile becomes: [C-C: 1 (Alice), C: 3, D: 6 ]. And the
process arrives at period t+1. Using the strategy profile as the state of period
t, we can find the state of period t+1 is determined by the state of period t.
In this example, the change of strategy profile can be viewed as a death of a
“defector” and a birth of a “cheap talker.” Therefore, the Markov process is a
simple birth and death chain.

Since we now have a way to describe the whole process and its states, the
next problem is to specify how individuals make decisions about switching
strategies. In the above example, Alice considers which strategy brings the
best expected payoff, then simply picks that strategy. In EGT, the individ-
uals’ payoff represents their social or economic success (Nowak et al, 2010).



14 Yi Wang, David Redmiles

Homogeneous
State 1: All play j

Homogeneous
State 2: All play i

Step1: One individual 
switch Strategy from j to i

After interactions, all individual 
switch Strategy from j to i

Fixation Probability is the probability that step 1 lead to 
homogeneous state 2. 

Fig. 6 Strategy switch process and fixation probability.

In more general cases, the strategy change is followed by some learning dy-
namics, for example, reinforcement learning (Erev and Roth, 1998), probe and
error (Skyrms, 2010), etc. In our discussion, we assume social learning is de-
terministic. Once a selected player finds a strategy brings a better payoff, she
immediately switches to the new one; as Alice does in the above example.

Now we can study the long-term dynamics of the process without consid-
ering each period’s state. The analysis method is based on EGT techniques
for finite populations, e.g., (Nowak, 2006a; Nowak et al, 2004) and stochastic
process analysis techniques, e.g., (Fudenberg and Imhof, 2006; Traulsen et al,
2006; Fudenberg and Imhof, 2008). We follow the method in Nowak (2006a)
to assume that in any period there are at most two coexisting strategies (for
convenience: i and j ) for calculating which one is more advantageous in the
long run.10 Suppose one player decides to try i in a state in which the whole
population takes strategy j, this would eventually lead to two situations: first,
this single i -player may bring the whole population to play i ; second, the i -
player may return to play j. The probability of the first situation is called a
fixation probability: ρji, while the probability of the second situation is 1-ρji
(see Fig. 6 for a more intuitive description).

If ρji = 1/N , i has no evolutionary advantage (i.e., better expected payoff
in the long run) over j, for 1/N represents pure neutral selection (Fudenberg
and Imhof, 2006). According to our prior discussion, the switches from all-j
and all-i result in a birth and death Markov chain. With these assumptions,
we can write the fixation probability ρji in the following form if j 6= i:

ρji =
1

1 +
∑N−1

k=1

∏k
l=1

g(l)
f(l)

(1)

This equation is directly adapted from (Fudenberg and Imhof, 2006). Here,
g(l) and f(l) refer to the expected payoff of playing j or i when there are l

10 Assuming there are at most two co-existing strategies simplifies the calculation. With
this technique, we only need to perform a small number of pairwise comparisons between
any two strategies. Then, we can build a whole picture of transitions among states.



Cheap Talk, Cooperation, and Trust in Global Software Engineering 15

individuals playing strategy i. Using πij to denote payoff in an i-j interaction,
they are given by (2) and (3). In fact, we already used it in the example in
Section 5.1 when calculating Alice’s expected payoff.

g(l) =
πjil + πjj(N − l − 1)

N − 1
(2)

f(l) =
πii(l − 1) + πij(N − l)

N − 1
(3)

After calculating all ρij , and assuming that the mutation limit µ is positive,
we can form an irreducible Markov process to describe the transition be-
tween strategies. We can calculate the long-term stationary distribution11 for
all three homogeneous states (“all-cooperate,” “all-defect,” and “all-C-C”)12

through 6 rounds of pairwise comparison.

5.3 Analysis Results

5.3.1 Dynamic Long-Term Analysis

In this section, we present the analytical results of the specific numerical ex-
ample in Fig. 5 by using the method introduced in Section 5.1. We assume the
team size is 100, since most software development teams have less than 100
members according to the ISBSG (release 7) industrial dataset (Pendharkar
and Rodger, 2009). Using equation 1, we can calculate the fixation probabil-
ity ρji for any two strategies. According to Nowak et al (2004), we set the
mutation rate µ → 1 to ensure the mutation does not interfere the deliber-
ated strategic change. Fig. 7 describes the stationary distribution and fixation
probabilities (those are stronger than neutral, i.e., ρji > 1/N) of the three
homogeneous states. In figure 7, each vertex represents a homogeneous state,
and the percentage shows that the probability of the whole process will end in
this state in the long run. The arrows between the three homogeneous states
indicates the strength of pairwise transitions (calculated using equation 1, 2,
and 3) stronger than neutral (1/100). In this example, the result is very sharp:
“all-defect” and “all-C-C” would disappear in the long run, which indicates
that almost all individuals eventually learn cooperation and build trust. In
this example, the punishment (g in Fig. 5) is large enough so that the “defect”
strategy is strictly dominated by “C-C,” which leads to the disappearance of
“all-defect.” Besides, cooperate also strictly dominates C-C. However, if the
punishment (incentive) was small enough, e.g., S−e+g < P , we could expect
the “all-defect” might survive in the long run.

The strengths of the transitions differ, which helps us to identify precisely
how a transition occurs. As figure 7 indicates, the transition from “all-defect”

11 For an irreducible Markov process, the stationary distribution is the unique eigenvectors
with eigenvalue 1 (Karlin, 2014).
12 They are homogeneous states because all players take the same strategy in each of these

three state.



16 Yi Wang, David Redmiles

Fig. 7 The simplex describes the fixation probability between three homogeneous states and
their stationary distribution in the long run (N = 100, ρ = 1/N , µ → 1). Only transitions
stronger than ρ are shown. A possible route for a non-homogeneous state (represented by
the red point in the middle) to reach the stable state is depicted.

to “all-C-C” is rather strong, while the transition from “all-C-C” to “all-
cooperate” is not so strong. The other transitions are relatively weak, for
example, the transition probability from “all-cooperate” to “all-C-C” is only
2.62×10−5. This indicates the important catalytic effect of C-C in moving
individuals from defect to cooperate, although it would disappear in the long
run. For a team, members may first become cheap talkers, and then convert to
cooperators. It is almost impossible for the majority of its members to directly
switch from defect to cooperate.

In the real world, it is almost impossible that all members are defectors
when a project starts. The team members may be well-mixed. For hybrid
states consisting of populations with different strategies, there is a similar way
to reach a final “all-cooperate” state. At the individual level, a defector will
first become a cheap talker, and then become a cooperator. A hybrid state
(indicated by the red point in the central of the simplex) may follow the red
curve in Fig. 7. Some defectors become cheap talkers, while in parallel some
cheap talkers change to cooperators. However, in the long run, all hybrid states
will disappear.

In our analysis, C-C eventually disappears, but it plays a central role in
bringing a team from the unfavorable state “all-defect,” to the more satisfying
state “all-cooperate.” Without it, a team is likely to be trapped in the “all-
defect” state, because the direct transition from “all-defect” to “all-cooperate”
is impossible (no direct line in fig. 7). A team could achieve “all-cooperate”
fairly fast if learning is quick. In our case, we assume learning is deterministic
and sensitive to any positive payoff improvement. Under these assumptions,
the total number of periods should be in O(N) level for an N-member team,
depending on the initial states. Given that most software development teams
have less than 100 members (Pendharkar and Rodger, 2009), it is reasonable to
assume the homogeneous “all-cooperate” state can be reached in a relatively
short period of time.



Cheap Talk, Cooperation, and Trust in Global Software Engineering 17

In some cases, if people are less sensitive to payoff change, sticking to C-C
is also an acceptable and possible alternative. When compared to the cost of
setting up or managing the e-cheap talk, cheap talkers can avoid being ex-
ploited by the defectors, while maintaining approximately equally good payoff
against the cooperators for ε << R.

5.3.2 Conditions for Long-term Cooperation

Independent of the above numerical example, in general, what conditions en-
sure the transition from defect to C-C, and from C-C to cooperate? If these
conditions can be identified, they could be applied to high-level organization
or computer-supported collaborative systems design to promote cooperation
in a straightforward way. To answer this question, we directly use an impor-
tant analytical measurement to identify pairwise evolutionary advantages in
the long run. The measurement was developed in Nowak (2006a) by guaran-
teeing equation 1 > 1/N (one strategy has more evolutionary advantage than
the other). For the two strategies i and j, if the following condition holds, the
transition from j to i is more probable:

(N − 2)πii + (2N − 1)πij > (N + 1)πji + (2N − 4)πjj (4)

If N is large enough (N ± 2 ≈ N), the above condition can be reduced to:

πii + 2πij > πji + 2πjj (5)

The transition from C-C to cooperate is guaranteed to be more probable if:

R+ 2R > R− e+ 2(R− e

2
) ⇒ −2e < 0 (6)

which automatically holds when e > 0. Obviously, this transition is guaranteed
by the payoff structure of the model. The transition from defect to C-C is
guaranteed to be more probable if:

R− e

2
+ 2(S + g − e) > T − g + 2P ⇒ (7)

g >
T + 2P −R− 2S

3
+

5e

6
(8)

So far, we have presented numerical and analytical results that indicate that
e-cheap talk sufficiently improves the probability of cooperation, so long as
the punishment to D-player is comparable to her opponent’s cost of using
C-C, and the transition from C-C to cooperate is almost destined. Moreover,
this result is independent of team size, for “N ” has been eliminated in the
step from equation (4) to (5). Since all team members adopt cooperate as their
strategy, it is reasonable to assume they build the expectation that other team
members would also cooperate. This expectation exactly comprises the trust
among team members(Al-Ani et al, 2013). Therefore, the development of the
expectation reflects the emergence of trust.



18 Yi Wang, David Redmiles

5.4 Analytical Answers to Research Questions

The main analytical findings are summarized in three propositions:

– Proposition 1. e-cheap talk is sufficient to promote cooperation if pun-
ishment to a defector is comparable to the opponent’s cost of using C-C.

– Proposition 2. The improvement of cooperation is explicit (more play-
ers become cooperators). Trust (expecting others to cooperate) is implicitly
developed, and further ensures cooperation.

– Proposition 3. e-cheap talk decreases, or even disappears, once trust and
cooperation are fully developed. Hence, it functions as a catalyst in this
process.

These three propositions provide answers to the research questions in the
introduction. Proposition 1 provides confirmation to RQ1. Proposition 2 con-
ceptually answers RQ2 by pointing out trust implicitly develops, while explicit
cooperation becomes a team social norm. Proposition 3 answers the long-term
dynamics of e-cheap talk (RQ3). They can be empirically validated. We can
expect the following empirical observations: (1) there is strong correlation be-
tween e-cheap talk and cooperation. If a pair of individuals use cheap talk, they
are likely to also cooperate on work-related issues. (2) e-cheap talk should occur
between individuals prior to work-related talk. (3) e-cheap talk will gradually
decrease with cooperation’s progress.

For a real world GSE team, the theoretical model provides a possible expla-
nation for how trust develops within the team using e-cheap talk. At the begin-
ning of GSE cooperation, team members have less confidence about whether
or not their remote colleagues will be cooperative. Therefore, they may prefer
to use e-cheap talk to exhibit their willingness to cooperate. The collabora-
tion then establishes whether remote colleagues respond cooperatively (either
using C-C or cooperate). The individuals who initiate e-cheap talk would not
experience significant loss, even if the others decide not to cooperate, for the
defectors’ punishment ensures the cost of e-cheap talk will be compensated.
However, once cooperation is established, people may feel they can directly
devote all their effort toward collaborating with remote colleagues without us-
ing e-cheap talk as a costly “probe.” Although others may still defect, they are
willing to take this risk, and they begin to trust that others will not defect. In
GSE practices, we can expect that team members will use less e-cheap talk as
cooperation progresses.

6 Case Study I: Apache Lucene’s IRC Discussions (#Lucene-dev)

To validate the results derived from the analytical model, we performed a
case study of Apache Lucene’s IRC discussion. The case study design follows
well-established guidelines in empirical software engineering literature, such as
Easterbrook et al (2008); Kitchenham et al (2008); Runeson and Höst (2009),



Cheap Talk, Cooperation, and Trust in Global Software Engineering 19

etc. The results of this empirical study provided general support to the theo-
retical propositions, thus supporting the validity of the analytical model and
its results in a real world GSE setting.

6.1 Case Study Design

Lucene is an open source information retrieval framework and API. We
chose Lucene and its IRC channel #lucene-dev for the following reasons: (1)
Lucene is a mature project with a stable core development team, which en-
ables us to study long-term interactions; (2) Lucene has two IRCs: a general
IRC channel #lucene and a logged channel #lucene-dev, with #lucene-dev
existing solely for the purpose of discussing and recording issues related to
development among developers, which allows us to be more focused, as well
as reduces “noisy” general user message interference; and, (3) compared with
email archives, the interactive, near-synchronous IRC chats are more similar to
day-to-day offline conversations. According to Guzzi et al (2013), pure cheap
talk email threads only account for 0.6% of all emails (see section 3.3). An
email may contain both cheap talk and work-related talk, making it difficult
to classify. Besides, developers participate in less than 75% of all email threads,
while development-related threads only account for 35% (Guzzi et al, 2013).

Our study sample comprised all logged messages from 04/15/2010 (the
start date of #lucene-dev) to 12/31/2012, which we collected from #lucene-
dev’s plain text file online archive. We downloaded and extracted messages
with three elements: time, sender, and content, excluding the auto-generated
login (out) messages. In total, we have 18,216 messages (excluding the simple
greeting or confirmation message, e.g., yes/no, “thanks” or “good morning”).
Using the three expectations (see Section 5.3) derived from theoretical propo-
sitions as working hypotheses, our empirical analysis consisted of the following
steps. (1) We classified all messages into two categories: cheap talk messages
and work-related messages. A lightweight qualitative analysis was performed
on all cheap talk messages to gain a basic understanding of cheap talk in
Lucene. In later analysis, we open-coded and merged them. (2) We identi-
fied all work-related dyadic cooperation pairs and cheap talk pairs to explore
the relationships between cheap talk and cooperation (Proposition 1 and 2).
(3) We applied statistical methods to study the dynamic pattern of cheap talk
(Proposition 3). In general, the empirical data provides moderate level support
to the theoretical predictions, and no contradiction was found.

6.2 Data Preparation: Message Classification

We developed a simple, rule-based, decision-tree classifier to classify the mes-
sages into two categories automatically: cheap talk messages and work-related
messages. Three heuristics determined classification: (1) Cheap talk should



20 Yi Wang, David Redmiles

Fig. 8 The heuristics based decision tree for classifying cheap talk messages and corre-
sponding rules.

not contain a set of specific keywords (dictionary13) such as: issue, bug, error,
commit, Java, etc. (2) If messages immediately before and after an unclassified
message are work-related, there is a near impossibility the message is cheap
talk. (3) Cheap talk is usually more interactive than work-related talk, whereas
the latter may comprise several messages in clarifying a problem. Therefore,
if a message is surrounded by messages from the same sender, it is less likely
to be a cheap talk. Simple greeting or confirmation messages (e.g., “yes/ok,”)
were not classified, but they were retained for the rule (3), requiring their
presence as context. Fig. 8 describes the decision process and the rule applied
to each decision step. The classification yielded two sets of labeled messages.
The number of cheap talk messages (n=1296) is far less than the number of
work-related ones (n=16920).

Since the number of cheap talk messages is far less than that of work-related
messages, we simply performed a manual post-classification results check. The
decision rules ensured that it is almost impossible for a cheap talk message to
be classified as “work-related.” Specifically, the classification method almost
only generates false positive cheap talks. We randomly sampled 500 messages
classified as “work-related” and found only one instance of a cheap talk message
(precision = 99.8%). After finishing the classification, we read through all of
them and manually excluded all false positives (n = 38). Compared with more
sophisticated techniques (e.g., D-tree induction), our simple approach avoided
the tricks in constructing proper training set and works well for this specific
classification. The dictionary of pre-selected work-related keywords integrates
common and domain knowledge into the classifier, and is highly extensible. We
compared the results with two classification algorithms (Naive Bayes, Decision
Tree) in Python scikit-learn library in terms of Precision and Recall. The
heuristics-based decision tree classifier outperforms both.

13 This study’s dictionary contains 66 keywords. See Appendix B.1 for the full dictionary.



Cheap Talk, Cooperation, and Trust in Global Software Engineering 21

6.3 Empirical Results and Findings

6.3.1 e-Cheap Talk in #lucene-dev

e-cheap talk covers various topics, including weather, food, hometown, politics,
or even personal life.14 Compared to the social interactions messages in mailing
lists (Guzzi et al, 2013), the topics are much more diverse. Furthermore, cheap
talk can be intentional or impromptu. Intentional cheap talk is usually used
to show one’s friendliness and minimize social distance (Cassell and Bickmore,
2003); for example, presenting some information that may be unfamiliar and
interesting for others (example 1), or introducing one’s background (example
2). The latter is more situational, and often triggered by an event. For instance,
example 3 was triggered when a Russian developer joined the #lucene-dev.
In general, intentional cheap talks are more common than impromptu ones.
For intentional cheap talk, participants may need to interrupt their on-going
work, e.g., “back to coding” or similar phrases are common messages after
some cheap talks. These words reflect there is a small cost (e in 5) associated
with cheap talk over the internet.

Example 1: state vs federal rights is still a big topic in the US. do
you know about the health care legislation that recently passed the US
congress? (American Politics)
Example 2: hamburg is near but its also a separate region. and hanover
but it does not share. hannover is the capitol of lower Saxony, so bre-
men is an island :-) (Hometown)
Example 3: my girlfriend can speak Russian, she is an Estonian. (Per-
sonal Life)

As our model predicts, ignoring cheap talk is not proper and triggers pun-
ishment. Punishment for uncooperative responses to cheap talk does exist and
takes various forms. The most common punishment is rejecting a cheap talk
defector’s future cooperation request. However, there is no pre-assigned, cen-
tralized authority to administrate the punishment. Rather, it works by way
of an individual’s personal choice. In our sample, there are six instances of
explicit punishments via direct refusals to defector’s cooperation request. In
one extreme case, the defector left #lucene-dev since no one was interested in
cooperating or talking to him any longer. In this case, the punishment (p in 5)
is very large. The punishment was administrated by all community members
who witnessed the defector’s misbehavior. The compensation is not direct,
but we may expect those who use cheap talk with defectors may gain some
reputation in the community.

6.3.2 e-Cheap Talk and Cooperation

Our study found strong correlations between cheap talk and cooperation. We
extracted all dyadic cooperation pairs by identifying “send-reply” patterns

14 We quote three representative examples (example 1-3), making some formatting changes.



22 Yi Wang, David Redmiles

Fig. 9 The dynamics of cheap talk and work-related message over time (left axis: cheap
talk, right axis: work-related message).

from work-related messages. For cheap talk messages, we identified dyadic pairs
using the same method. In total, there are 136 pairs of cooperators engaging
in work-related discussions, and 101 pairs of cheap talks. Almost 70% of work-
related pairs (95 in 136) are also in the set of dyadic cheap talk pairs. Only
six cheap talk pairs did not exchange any work-related message. These pairs
seem to be those who share the same interests, such as games, but do not have
overlap in their work. These talks were often triggered by external events,
such as the release of a new Xbox game. We have no conclusive reason for
why some work-related pairs did not have any cheap talk. However, 19 out of
35 of these pairs contained at least one highly respected community member.
Perhaps people recognize their reputation and automatically trust them. We
also noticed a “compensated” individual was involved in three of these pairs.
This at least provides some indirect evidence for how compensation works. We
further explored the temporal relationship between a cheap talk pair and its
corresponding work-related pair. 90.5% (86 in 95) cheap talk pairs appeared
before the corresponding work-related pairs. These results at least partially
indicate: (1) Cheap talk correlates to cooperation. If two individuals use cheap
talk, it is probable that they also cooperate. (2) A cooperative relationship may
result from cheap talk. At least, cheap talk is not caused by cooperation, as
most cooperation occurs after the appearance of cheap talk. These form some
support to Propositions 1 & 2. Although we cannot directly measure trust in
this study, the literature on virtual collaboration often uses the establishment
of cooperation as a good indicator of trust (Bos et al, 2002).

6.3.3 The Dynamics of Cheap Talk over Time

The frequency of cheap talk drastically changed since the launch of #Lucene-
dev. From 04-15-2010 to 04-30-2011, #lucene-dev was very inactive except for
the first two weeks. During that period, there were few examples of cheap talk,
and the number of work-related messages was also small. Specifically, there
were zero chats in 90 consecutive days (12-04-2010 to 03-03-2011). In May



Cheap Talk, Cooperation, and Trust in Global Software Engineering 23

2011, the Lucene project decided to better utilize the #lecune-dev to ensure
the discussions among code contributors would be logged, and discussions did
increase in frequency.

However, the dynamic patterns of cheap talk and work-related message
are quite different. The number of cheap talks continued to decrease. Cheap
talk eventually almost disappeared in about three months after the migra-
tion of development activities to #lucene-dev. Fig. 9 visualizes the differing
dynamics of both cheap talk and work-related message from 05-01-2011 to
07-31-2011. Unlike the decreasing trend of cheap talk, there are no significant
variations for work-related talk, except for a slight weekly cyclical effect. We
performed a simple trending decomposition using the STL method Cleveland
et al (1990). The trend for cheap talk message is decreasing while the trend for
the work-related message is irregular with slight seasonal effect. More work-
related messages appeared during the weekend, perhaps because people usually
made open source contributions when they were off from work in the weekend.
There were several boosts in cheap talk, but those were mainly due to the
several core developers joining the new IRC channel later than usual.

By modeling the dynamics of the cheap talk and the work-related message
as two time series (from 05-01-2011 to 07-31-2011), we statistically tested their
cointegration15 to examine their distinctiveness. We followed Engle-Granger ’s
two-step method: we first constructed the spread through Ordinary Least
Square (OLS) regression, and then tested the unit root with the Augmented
Dickey-Fuller (ADF) test. The test was performed using R package fUnitRoots.
The ADF p-value is 0.162, hence these two dynamics are not co-integrated,
and do not exhibit similar change patterns.

We also examined the Granger causality (Granger, 1988) between two time
series, using the grangertest in R library forecast. We parameterized a series
of different lags from 1 to 7, which represents exactly one week in time range.
We perform 14 Granger causality tests (cheap talk→ work-related message: 7,
work-related message→ cheap talk: 7). None of them are significant (minimal
p− value = 0.261). The results fit our expectation that the decrease in cheap
talk message did not result from the change in work-related message (or vice
versa), at least not in the sense of Granger causality.

Exactly as the model predicted, the e-cheap talk plays an important role in
developing cooperation and trust. Once cooperation and trust becomes stable,
an individual may not be willing to pay the cost of e-cheap talk, directly
switching to cooperate mode, since she can expect and trust the others will
have similar expectation or behavioral choices. This supports the theoretical
proposition 3’s prediction of the decreasing trend of e-cheap talk in the long
run.

15 Two time series are cointegrated if they share a common stochastic drift, hence are
mutually predictable, see Pfaff (2008) for more details.



24 Yi Wang, David Redmiles

7 Case Study II: Chromium OS’ IRC Discussions (#chromium-os)

The analyses towards Lucene’s IRC discussions provide general support to
the theoretical results. To further validate theoretical results, we performed
another case study with the IRC discussions of Chromium OS (#chromium-
os). It is the project behind Chrome OS, which is a cloud-based operating
system based on the Linux kernel and designed to work with web applications
and installed applications.

Although Chromium OS is an open source project, it is different from
Lucene due to the heavy involvements of a commercial organization (i.e.,
Google). Many developers are from the same company, and hence their par-
ticipation may be quite different from voluntary behaviors in #lucene-dev
(Wagstrom, 2009). For example, some developers may know each other fairly
well offline, and may be not so “free” to leave the community. This allows us to
examine our results’ generalizability in a slightly different setting. Google does
have an internal IRC channel; however, many Google employees still maintain
their presences in #chromium-os16. One disadvantage is that #chromium-os
does not only contain messages from developers, although it is the designated
development IRC channel. Due to the popularity of Chromebook in the gen-
eral public, many end users who are supposed to use #chromium-os-users and
#chromium-os-discuss do post something irrelevant on it. We had to restrict
the time frame when constructing the study sample.

7.1 Case Study Design and Data Preparation

The case study design is almost as same as the prior one except for several small
differences. First, the study sample consists of the first 18 months (11/19/2009
- 04/30/2011) of IRC messages, to ensure the quality of the data (Prikladnicki
et al, 2014). There was a substantial amount of messages from end users since
05/2011, due to the debut of Chromebook to mass consumer electronics market
in June/July 2011. Since then, messages from end users account for a nontrivial
proportion (≥ 5%) in all messages, while almost all discussions were among
developers in the first 18 months. Second, #chromium-os is not an officially
logged IRC channel, so we utilized an unofficial log on echelog17.

The study sample contains 93617 messages. We adapted the “dictionary”
used in message classification while keeping the same classification rules. 19
Lucene specific keywords were dropped, and 71 new Chromium OS specific
keywords (most of them are the names of tools and Linux package) were added
(See APPENDIX B.2). Using the same data processing steps, we found 3280

16 We retrieved the “tree” (the sum of the various source repositories used to build
the project) status history on http://chromiumos-status.appspot.com/. Then, we manually
matched the usernames in tree status (associated with email address) with #Chromium-OS
users and found the majority of #chromium-os active code contributors have email ad-
dresses in the form of “XXX@google.com”, which indicates they are Google employees. We
also consulted their Linkedin profile to determine their affiliations.
17 http://echelog.com/logs/browse/chromium-os/



Cheap Talk, Cooperation, and Trust in Global Software Engineering 25

cheap talk messages and 90337 work-related messages. We read all cheap talk
messages, and 3127 messages remained “cheap talk” after excluding 153 false
positives. We performed a similar precision test for work-related messages. In
500 randomly sampled messages classified as “work-related,” no cheap talk
message was identified (≈ 100% precision). The classification results achieve
acceptable precision, although we cannot rule out the possibility that some
cheap talk messages were mislabeled. The number of mislabeled messages
should be at a relatively low level.

7.2 Empirical Results and Findings

7.2.1 e-Cheap Talk in #chromium-os

The fraction of cheap talk in #chromium-os is much lower (3.45% vs. 6.96%)
than that in #lucene-dev. However, the topic is even more diverse due to
the larger number. Besides the topics we mentioned before, we noticed there
is a specific set of cheap talk messages poking fun at competitors and their
products. These messages usually arouse interesting and funny conversations.
For example, a contributor shared a link to Google’s stock price, and another
one commented: “that’s because shareholders probably expected a Microsoft
killer...like journalists”. Since developers may come from the same company
(even same department/team), using this strategy may help them quickly
regain their offline common ground. Another noticeable fact is that the cheap
talks were not in the one-to-one conversation patterns prevalent in #lucene-
dev; rather, more than half of the cheap talks (1632 in 3127) took a “meeting”
style in #chromium-os. That is, an individual posts a cheap talk message
without explicitly specifying who is the receiver in #chromium-OS, then some
other people talk about it when they see it. It is more like a group of people
coming together and chatting about funny things during their lunch than
a one-to-one conversation. In fact, the many-to-many strategy is more cost-
effective. In #chromium-os, many contributors may have already known each
other quite well in their offline lives and be confident with their peers, so
they are confident to take the many-to-many strategy and broadcast their
willingness to cooperate. Whereas an individual may have to talk to everyone
in the team in order to ensure their willingness to cooperate will be properly
delivered to those unfamiliar collaborators #lucene-dev.

7.2.2 e-Cheap Talk and Cooperation

Although the majority of cheap talks took the “meeting” style, there are still
some correlations between cheap talk and cooperation. Using the same method,
we extracted all dyadic pairs of “work-related” cooperation and cheap talk
relationships. In total, we identified 239 pairs of cooperators who have explicit
cooperation (one mentioned the other in at least one message), and 125 pairs
of individuals who have explicit cheap talks. 46% of work-related pairs (110



26 Yi Wang, David Redmiles

in 239) are also in the set of dyadic cheap talk pairs. 15 cheap talk pairs did
not have any explicit work-related talk. 42.7% cheap talk pairs (47 in 110)
appeared before the corresponding work-related pairs. Compared with the
results from Case Study I, the effects are not so strong, e.g., less than half of
the work-related pairs were developed after the occurrence of cheap talk pairs.
However, most individuals participated in meeting-style many-to-many cheap
talks during the project kick-off. Counting these cheap talks, it is still true
that the majority of work-related pairs followed cheap talk.

7.2.3 Cooperation Reparation with e-Cheap Talk

While individuals simply quit participating if they were explicitly punished by
others in #lucene-dev, developers proactively took efforts to repair trust and
cooperation even before explicit punishment in #chromium-os. For instance,
one developer (Alpha) insisted he had fixed a bug (actually he did not), and
behaved in a very uncooperative manner when another contributor (Beta)
attempted to use a joke about “bug” to persuade him to review the code
together. Beta then stopped the conversation and left. However, once Alpha
realized his misbehavior, he made a joke about himself and mentioned Beta as
the receiver without an explicit apology. Beta accepted this, and they started
to work together to review Alpha’s code. In this example, both Alpha and
Beta seem to accept cheap talk as a proper and sufficient action to repair the
cooperation. Many Chromium OS contributors are very probable to working
in the same company and the contribution to the project may be part of their
regular jobs. They are not free to quit their participation in #chromium-os
without any negative influence on their career. Therefore, they tend to switch
from defect to C-C once they realize that defect is not proper. In this scenario,
we find that formal offline social realities (e.g., co-worker) in an organization
may facilitate cooperation development in virtual collaboration.

7.2.4 The Dynamics of Cheap Talk over Time

Fig. 10 plots the differing change patterns of both cheap talk and work-related
message from 11-21-200918 to 02-28-2010. At the beginning, both the number
of cheap talk messages and work-related messages (most of them are about
setting up the development environment) are high. However, the number of
cheap talk messages dropped very fast and almost disappeared after two weeks.
In total, the cheap talks in the first month accounts for over 1/3 of all cheap
talks in the whole sample (18 months). Although there were less work-related
messages, which also dropped after reaching its peak on the second day, the
number remains at a relatively stable level. We also utilized co-integration
analysis to examine their distinctiveness. The ADF p-value is 0.379, and hence
these two dynamics are not co-integrated and do not exhibit similar change
patterns. Trend decomposition analysis also suggests similar results. However,

18 No message in 11/19 and 11/20.



Cheap Talk, Cooperation, and Trust in Global Software Engineering 27

0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 

Cheap Talk Work-Related Message 

Fig. 10 The dynamics of cheap talk and work-related message over time, (left axis: cheap
talk, right axis: work-related message).

we did not observe the seasonal effect for work-related messages. As we did
before, we performed a series of Granger causality tests. Again, no Granger
causality was found (minimal p− value = 0.302). The disappearance of cheap
talk was not caused by the change in work-related talk.

8 Discussion

Table 1 summarized the research questions, theoretical propositions, and corre-
sponding empirical evidence. Combining game theory deduction and empirical
study, the study described in this paper provides an alternative explanation
of how, in the presence of punishment, e-cheap talk can create trust. In the
Stag-hunt game, cooperation requires at least moderate trust. Without trust,
individuals may not expect others to choose the cooperate strategy in their
interaction, and thereby defect to avoid the potential risk. With e-cheap talk
acting as a catalyst, trust emerges from and ensures cooperation. The e-
cheap talk guarantees the loss in a failed “cooperation trial” can be offset by
punishment/compensation enforcement, leading to increased willingness to co-
operate. In this process, the trust toward others, or more precisely, the trust
of others’ “rationality” eventually develops and “cooperation” becomes the
mainstream choice. The improvement of cooperation can be observed, while
trust development is implicit (not easily directly observed at the behavioral
level). However, they are essentially two faces of the same process. Even in the
case that people already knew each other very well (Case Study II), they still
utilized cheap talk at the early phase of virtual collaboration. The model in this
paper employs cost-benefit perspective to study “social interactions” among
software developers in strategic level brings new insights. For example, our
model predicts that e-cheap talk will gradually disappear with cooperation’s
progress, which is rarely mentioned in the prior literature. We furthermore
demonstrate e-cheap talk’s positive impact in GSE collaboration.



28 Yi Wang, David Redmiles

Table 1 Summary and mapping of research questions, theoretical propositions, and empir-
ical findings

Empirical Findings
RQs Theoretical Study I: #lucene-dev Study II: #chromium-os

Propositions (Total: 18216 messages) (Total: 93617 messages)
(Cheap talk: 1296 messages) (Cheap talk: 3280 messages)

RQ1 Prop. 1 Section 6.3.1, 6.3.2 No direct evidences
RQ2 Prop. 2 Section 6.3.1, 6.3.2 Section 7.2.2, 7.2.3
RQ3 Prop. 3 Section 6.3.3 Section 7.2.4

8.1 e-Cheap Talk Jump-Starts Trust

The results presented in this paper reinforce social chat’s role in jump-starting
trust and cooperation (Zheng et al, 2002) in the early phase of collaboration, as
well as the quick decrease of using this “jump-starter” after the establishment
of trust and cooperation. The empirical results show that the jump-starter
(cheap talk) is not only used in the early phase of collaboration, but also ap-
plied to repair trust (see Section 7.2.3). These findings provide more compre-
hensive and direct support to the “jump-starter” metaphor in real distributed
collaboration settings. Also, the theoretical model provides a plausible expla-
nation for the mechanism underlying the “jump-starter” media effect. When a
collaborator see a cheap talk message from another one, he or she will be more
confident to assume that the other collaborator will behave cooperatively in
following interactions. In case in which trust was broken, cheap talk represents
the intentions to repair the relationship even with extra efforts.

8.2 Cooperation & Trust in A Social Network

The model we proposed does not consider a network effect. All players are
equally important with respect to their positions in a fully connected network.
However, in the real world, team members are often located in their social net-
work with different positions (Gharehyazie et al, 2014). The network structure
influences their communication and interaction (Damian et al, 2007), hence
affects the evolution of cooperation and trust development. In such cases,
the social network plays a key role in enhancing organizational learning with
key members being a source of information for software engineering activi-
ties (Tamburri et al, 2013). For example, people in different locations often
have to communicate through specific individuals as “hubs.” If trust were first
built among these “hubs,” it may take much less time for the whole team
to develop trust. Moreover, top-down, dictator-style communication may be
disadvantageous to the emergence of cooperation and trust (Burt et al, 2013).
Furthermore, the dynamic nature of developer networks (Hong et al, 2011)
will also allow us to investigate the cooperation network’s evolution over the
time. In future research, we plan to extend the model presented in this paper
to incorporate social network effects.



Cheap Talk, Cooperation, and Trust in Global Software Engineering 29

8.3 Design Implications

Our theoretical and empirical results lead to some design implications. For
example, as equation (8) indicates, ensuring the transition from defect to C-C
requires the punishment/incentive to be comparable to the cost of e-cheap talk.
Without drastically increasing the punishment, reducing the cost of e-cheap
talk is a matter-of-course (see the right part of the equation(8)). Innovative
tools may help to fulfill this requirement, and organizational networks will
potentially improve or hinder cooperation’s development. Hence, redesigning
organizational structure would help. We will discuss the implications to both
collaboration management and tools.

8.3.1 Implication to Collaboration Management

The rapid development of trust and cooperation in globally distributed soft-
ware teams has been a long lasting problem (Olson and Olson, 2000; Al-Ani
and Redmiles, 2009), and cheap talk over the Internet may provide a sound
solution. Sharing non-work-related information should be encouraged, espe-
cially in the early phase of cooperation and trust development (see our propo-
sitions in Section 5.3). Prior studies (Schumann et al, 2012) show that even a
personal picture may be very helpful to trust-building. Furthermore, organiza-
tional communication structure affects collaboration, work performance, and
the quality of software deliverables (Herbsleb and Grinter, 1999; Kwan et al,
2012). Specific communication structures promote or hinder trust and collabo-
ration development among developers (Layman et al, 2006). As we mentioned
in Section 8.2, the top-down, dictator-style communication is disadvantageous
to the emergence of cooperation and trust. Therefore, cooperation and trust
would benefit from increased participation of general developers who are not
in central positions, which may eventually speed up global level collaborations
(Herbsleb and Mockus, 2003). Furthermore, although some communication
network structures are very efficient, they are not stable enough for the im-
balance of cost. For example, the individual (often leaders of project) in the
center have to pay most of the cost, since all communications rely on her as a
“repeater.” If the cost is high, the network may break down before the develop-
ment of cooperation. Hence, reducing the cost is crucial. Open and transparent
communication will help to reduce the cost and mitigate the imbalance of cost
distribution among members (Dabbish et al, 2012), and thus should be en-
couraged in management practices (e.g., logging all conversations). The model
developed in this paper provides a framework to enable agent-based simulation
for examining mechanism design alternatives (Ren and Kraut, 2014).

8.3.2 Implications to Tools Design & Usage

Both software engineering and CSCW communities agree that interaction
among software developers should be encouraged (Wagstrom et al, 2010).
Many collaboration tools have been designed to encourage this interaction.



30 Yi Wang, David Redmiles

However, few intelligent tools can tell software engineers how to interact with
their remote collaborators, who may be quite different from them. Using game
theory as the analytical engine for such intelligent tools may be a good alter-
native. By simulating and summarizing interaction scenarios with pre-defined
dynamics and individual characteristics, users would be able to identify which
strategy brings the best payoff. We are currently working on an intelligent tool
that suggests the proper strategies for interacting with an unfamiliar collab-
orator. The tool extracts information from an individual’s past work traces.
Using game theory modeling and simulation as the core engine, it can help a
developer decide which is a proper strategy (i.e., trust without any reservation
or cheap talk first) at collaboration’s initial stage.

In current practices, Web 2.0 and social media tools (Storey et al, 2014) are
primary e-cheap talk channels. However, (Al-Ani et al, 2012) pointed out that
their utilization is not encouraged; for instance, managers often believe these
tools cause interruptions to normal work, and hence do not want to support
their use at the organizational policy level. Our analysis shows that e-cheap
talks over Web 2.0 tools are worth a try. Managers may need to be more open to
the usage of Web 2.0 tools to promote cheap talk ; a more proactive/aggressive
alternative may be to integrate cheap talk into normal workflow. A developer
does not need to intentionally interrupt work to initiate cheap talk ; for in-
stance, an automatically-captured photo of the developer shared on a group
page offers a form of cheap information. This approach can serve as an alter-
native to integrating IDE with social media, e.g., internal “Facebook” plug-ins
for Eclipse IDE (Calefato et al, 2011). These tools would also help to reduce
the cost of cheap talk. In some situations, although cheap talk’s cost is small,
its distribution may be very imbalanced, i.e., a few people always pay the cost
(usually several core members). A simple tool that balances individual effort
may solve this problem. For example, the tool can identify the members less
frequently initiating e-cheap talk by analyzing the logs, and then suggest they
take initiative with e-cheap talk.

8.4 Methodological Implications

The human and social aspects of software engineering are increasingly well
studied in the software engineering area (Harper et al, 2013). A large body
of empirical literature has focused on many aspects of human interactions
in software development, including coordination and trust. Empirical studies
contribute rich evidence of real-world practice, but are relatively void of ex-
plicit theory. While greatly informing research, approaches that can combine
empirical studies and predictive theories have obvious advantages. When as-
sumptions are clearly articulated, a theory can provide predictive power and
avoid costly “trial and error” decisions.

Particularly in studying human and social aspects of software engineer-
ing, we argue that game theory provides an ideal analytical framework for
developing theoretical knowledge. Software engineering processes consist of



Cheap Talk, Cooperation, and Trust in Global Software Engineering 31

human decision-making activities. Developers have to decide proper strategies
for team member cooperation. Game theory has demonstrated its capability
in studying human decision-making processes and the long-term attributes of
social systems since the 1950s, and continues to introduce new perspectives to
cooperation research (Nowak, 2013). Via game theory model reasoning, we can
deductively develop propositions characterizing real-world phenomena, which
provides generative causality and explanation (Cederman, 2005).

The generative approach of game theory models comports well with current
empirical practices in SE research. All theoretical models and reasoning, no
matter how sophisticated, are imperfect real world abstractions. Their exter-
nal validity must be validated through comparison to empirical/experimental
results. This process forms a feedback loop between empirical and theoreti-
cal work. SE research may benefit from the combination of theoretical and
empirical study, which helps to build generalizable and rigorous knowledge,
while maintaining strong connections to reality. Leveraging EGT, we made
some preliminary attempts in this direction. The study was motivated by real
world phenomenon (Section 2) and presented theoretical explanations (Section
3, 4, & 5). We validated the theoretical propositions through two empirical
case studies (Section 6, & 7). Our study demonstrates the feasibility of this
approach and shows how to use it to develop sense-making theory and gen-
eralizable empirical knowledge. However, we admit that a limitation of this
methodology is that the theoretical model and its propositions are somewhat
hard to validate in some situations using direct empirical evidence. Researchers
may need to pay extra attention to empirical study design, or employ several
different empirical methods.

8.5 Threats to Validity

The research approach helps us to achieve high internal and external validity.
Game theory modeling requires only minimal assumptions that do not involve
too much subjective bias. The empirical studies of Lucene and Chromium
OS rely on open human communication records, and hence suffers less from
the validity issues raised in data collection practices. The message classifica-
tion was automatically executed with minimal subjective interventions, further
preventing significant internal validity threats. The theoretical analyses also
help to solve the generalizability problem of empirical study. However, a po-
tential threat to validity is that the team is fixed in its life cycle, whereas OSS
teams are usually very flexible. In its life cycle, newcomers may join, while
some familiar faces may leave. However, this does not mean the model’s re-
sults are essentially wrong. First of all, the “fixed” population assumption only
requires the population has no potential to be infinite. Moreover, Lucene’s
core team is very stable, and the timeline for achieving universal cooperation
is relatively short (at most several months). Chromium OS’ project team is
even more stable, for many contributors work for Google. Nevertheless, this
issue needs to be further investigated in more stable software development



32 Yi Wang, David Redmiles

teams. It is also possible that the results may be generalizable to other types
of virtual collaborations (e.g., collaborative editing or knowledge sharing) if
these collaborations could be abstracted into the form of the extended Stag-
hunt game. However, this generalizability also needs empirical validation in
the specific settings to fulfill the requirements of this paper’s approach.

Another limitation is that the model parameter values are assigned rather
than surveyed. Although we are confident in their relative quantitative re-
lationships, e.g., the cost of cheap talk (e) << the benefit of cooperation
(R), their absolute value is not precisely estimated. To solve this problem,
researchers, including ourselves, may perform field studies to survey software
developers and identify their perceptions of these parameters. For example, we
may ask them to report the proportion of their perceived cost of cheap talk
to the benefit of successful cooperation. We may also collect their perception
of punishment/compensation in the team. It also inspires another potential
methodological integration of empirical and analytical approaches, i.e., deriv-
ing the abstract model and its parameters from empirical observation. Hence,
the analytical model will be more realistic and relevant to real world practices.

9 Conclusions and Future Work

In this paper, we investigate how informal non-work related conversations
over the Internet (e-cheap talk) help to promote cooperation and trust in soft-
ware development teams. We employ a unique cost-benefit perspective using
a novel EGT model inspired by a previous field study. We performed a subse-
quent assessment by data mining the development IRC channels of Lucene
and Chromium OS. Together, our model and empirical studies lead us to
conclude that e-cheap talk can help distributed teams build cooperation and
trust. However, e-cheap talk works as a catalyst in trust and cooperation de-
velopment, and tends to gradually disappear in the long run.

Studies of trust and other human factors in software development will bene-
fit from rigorous models that enable analytical study and computer simulation
and, in particular, employ EGT to better examine the emergence of complex
social behavior. Doing so will be informative to organizational concerns as
well as software tool development. Furthermore, this study at least partially
demonstrates the feasibility of combining theoretical modeling and empirical
study towards developing rigorous, generalizable knowledge that can reflect
and guide real world practices. More empirical work is needed to show how
the model and the real-world are connected. Until then, it is still an open
question as to how much EGT can tell us about the dynamics of interactions
among distributed collaborators in software engineering activities. We have not
yet provided a definitive answer to this question, but the preliminary results
reported in this paper are encouraging, at least for trust research in GSE. We
will further collect empirical data to validate our model and its analytical re-
sults. For instance, we plan to collect longitudinal trust data to directly assess
the dynamics of trust (Proposition 2), which this study has not done. We will



Cheap Talk, Cooperation, and Trust in Global Software Engineering 33

also develop novel tools for supporting software engineers’ decision-making in
interactions with unfamiliar collaborators.

The model can be extended to incorporate other factors. For instance, the
current model only considers the “punishment/incentives” mechanism, but, in
the real world, other factors (e.g., commitment, emotion, culture) also regulate
the trust and cooperation process. For instance, by imposing a “commitment”
mechanism, it is possible to investigate the trust damage and repair process
(Al-Ani et al, 2013; Schniter et al, 2013) and how to motivate individuals to
deliver their commitment (Winikoff, 2007). People form subgroups to exer-
cise different strategies to confirm their subgroup identities. It is possible to
integrate the EGT model and Social Network Analysis to explore complex
real-world interpersonal relationships (Jackson, 2010). The discussions in Sec-
tion 8.2 also demonstrate the promise of this combination. We will continue
our research in this direction.

Acknowledgements We would like to thank Prof. Brian Skyrms for helping us refine the
model and the analyses. We appreciate Dr. Ban Al-Ani for collaborating on the empirical
data in Section 2. We would like to thank the anonymous reviewers for their insightful
comments and suggestions.

References

Al-Ani B, Redmiles D (2009) In strangers we trust? findings of an empirical
study of distributed teams. In: Global Software Engineering, 2009. ICGSE
2009. Fourth IEEE International Conference on, IEEE, pp 121–130

Al-Ani B, Wang Y, Marczak S, Trainer E, Redmiles D (2012) Distributed
developers and the non-use of web 2.0 technologies: A proclivity model. In:
Proc. ICGSE, pp 104–113

Al-Ani B, Bietz MJ, Wang Y, Trainer E, Koehne B, Marczak S, Redmiles DF,
Prikladnicki R (2013) Globally distributed system developers: their trust
expectations and processes. In: Proc. CSCW, pp 563–574

Banerjee A, Chandrasekhar AG, Duflo E, Jackson MO (2013) The diffusion
of microfinance. Science 341(6144):1236,498

Bos N, Olson J, Gergle D, Olson G, Wright Z (2002) Effects of four computer-
mediated communications channels on trust development. In: Proc. CHI, pp
135–140

Bowles S, Gintis H (2011) A cooperative species: Human reciprocity and its
evolution. Princeton University Press

Burt RS, Kilduff M, Tasselli S (2013) Social network analysis: Foundations
and frontiers on advantage. Annual Review of Psychology 64(1):527–547,
DOI 10.1146/annurev-psych-113011-143828

Caglayan B, Bener A, Miranskyy A (2013) Emergence of developer teams in
the collaboration network. In: Proc. CHASE

Calefato F, Lanubile F, Sanitate N, Santoro G (2011) Augmenting social
awareness in a collaborative development environment. In: Proceedings of



34 Yi Wang, David Redmiles

the 4th international workshop on Social software engineering, ACM, pp
39–42

Calefato F, Lanubile F, Sportelli F (2013) Can social awareness foster trust
building in global software teams? In: Proc. SSE, pp 13–16

Camera G, Casari M, Bigoni M (2013) Money and trust among strangers.
Proceedings of the National Academy of Sciences 110(37):14,889–14,893

Cassell J, Bickmore T (2003) Negotiated collusion: Modeling social language
and its relationship effects in intelligent agents. User Modeling and User-
Adapted Interaction 13(1-2):89–132

Cataldo M, Herbsleb JD, Carley KM (2008) Socio-technical congruence: a
framework for assessing the impact of technical and work dependencies on
software development productivity. In: Proc. ESEM, pp 2–11

Cederman L (2005) Computational models of social forms: Advancing gener-
ative process theory. American Journal of Sociology 110(4):pp. 864–893

Chiappori PA, Levitt S, Groseclose T (2002) Testing mixed-strategy equilib-
ria when players are heterogeneous: The case of penalty kicks in soccer.
American Economic Review pp 1138–1151

Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) Stl: A seasonal-
trend decomposition procedure based on loess. Journal of Official Statistics
6(1):3–73

Cramton CD, Hinds PJ (2007) Intercultural interaction in distributed teams:
Salience of and adaptations to cultural differences. In: Proc. AOM Annual
Meeting, pp 1 – 6

Dabbish L, Stuart C, Tsay J, Herbsleb J (2012) Social coding in github: trans-
parency and collaboration in an open software repository. In: Proceedings
of the ACM 2012 conference on Computer Supported Cooperative Work,
ACM, pp 1277–1286

Damian D, Izquierdo L, Singer J, Kwan I (2007) Awareness in the wild: Why
communication breakdowns occur. In: Global Software Engineering, 2007.
ICGSE 2007. Second IEEE International Conference on, IEEE, pp 81–90

Dittrich Y, Giuffrida R (2011) Exploring the role of instant messaging in a
global software development project. In: Proc. ICGSE, pp 103–112

Ducheneaut N (2005) Socialization in an open source software community: A
socio-technical analysis. Computer Supported Cooperative Work (CSCW)
14(4):323–368

Easley D, Kleinberg J (2010) Networks, crowds, and markets: Reasoning about
a highly connected world. Cambridge University Press

Easterbrook S, Singer J, Storey MA, Damian D (2008) Selecting empirical
methods for software engineering research. In: Guide to advanced empirical
software engineering, Springer, pp 285–311

Erev I, Roth AE (1998) Predicting how people play games: Reinforcement
learning in experimental games with unique, mixed strategy equilibria.
American economic review pp 848–881

Farrell J, Rabin M (1996) Cheap talk. The Journal of Economic Perspectives
10(3):103–118



Cheap Talk, Cooperation, and Trust in Global Software Engineering 35

Ficici S, Pollack J (2000) Effects of finite populations on evolutionary stable
strategies. In: GECCO, pp 927–934

Fudenberg D, Imhof LA (2006) Imitation processes with small mutations. Jour-
nal of Economic Theory 131(1):251 – 262, DOI 10.1016/j.jet.2005.04.006

Fudenberg D, Imhof LA (2008) Monotone imitation dynamics in large
populations. Journal of Economic Theory 140(1):229 – 245, DOI
10.1016/j.jet.2007.08.002

Gharehyazie M, Posnett D, Vasilescu B, Filkov V (2014) Developer initiation
and social interactions in oss: A case study of the apache software foun-
dation. Empirical Software Engineering pp 1–36, DOI 10.1007/s10664-014-
9332-x

Gintis H (2000) Game theory evolving: A problem-centered introduction to
modeling strategic behavior. Princeton University Press

Granger CW (1988) Some recent development in a concept of causality. Journal
of econometrics 39(1):199–211

Guzzi A, Bacchelli A, Lanza M, Pinzger M, van Deursen A (2013) Commu-
nication in open source software development mailing lists. In: Proc. MSR,
pp 277–286

Harper R, Bird C, Zimmermann T, Murphy B (2013) Dwelling in software:
Aspects of the felt-life of engineers in large software projects. In: ECSCW
2013: Proceedings of the 13th European Conference on Computer Supported
Cooperative Work, 21-25 September 2013, Paphos, Cyprus, Springer, pp
163–180

Herbsleb JD, Grinter RE (1999) Splitting the organization and integrating the
code: Conway’s law revisited. In: Proc. ICSE, pp 85–95

Herbsleb JD, Mockus A (2003) An empirical study of speed and communi-
cation in globally distributed software development. Software Engineering,
IEEE Transactions on 29(6):481–494

Herbsleb JD, Atkins DL, Boyer DG, Handel M, Finholt TA (2002) Introducing
instant messaging and chat in the workplace. In: Proc. CHI, pp 171–178

Hong Q, Kim S, Cheung SC, Bird C (2011) Understanding a developer social
network and its evolution. In: Proceedings of the 2011 27th IEEE Interna-
tional Conference on Software Maintenance, IEEE Computer Society, Wash-
ington, DC, USA, ICSM ’11, pp 323–332, DOI 10.1109/ICSM.2011.6080799

Jackson M (2010) Social and Economic Network. Princeton University Press
Jackson M, Rodriguez-Barraquer T, Tan X (2012) Social capital and social

quilts: Network patterns of favor exchange. The American Economic Review
102(5):1857–1897

Jarvenpaa SL, Shaw TR, Staples DS (2004) Toward contextualized theories of
trust: The role of trust in global virtual teams. Information systems research
15(3):250–267

Jensen C, Riestenberg G (2012) Stag-hunt Game. http://goo.gl/ieiLmX, [On-
line; accessed 12-12-2014]

Karlin S (2014) A first course in stochastic processes. Academic press
Kitchenham B, Al-Khilidar H, Babar MA, Berry M, Cox K, Keung J, Kurni-

awati F, Staples M, Zhang H, Zhu L (2008) Evaluating guidelines for report-



36 Yi Wang, David Redmiles

ing empirical software engineering studies. Empirical Software Engineering
13(1):97–121

Kwan I, Cataldo M, Damian D (2012) Conway’s law revisited: The evidence
for a task-based perspective. Software, IEEE 29(1):90–93

Layman L, Williams L, Damian D, Bures H (2006) Essential communication
practices for extreme programming in a global software development team.
Information and software technology 48(9):781–794

March JG, Simon HA (1993) Organizations. Second Edition. Wiley
Mislin AA, Campagna RL, Bottom WP (2011) After the deal: Talk, trust

building and the implementation of negotiated agreements. Organizational
Behavior and Human Decision Processes 115(1):55 – 68

Montuschi E (2003) The Objects of Social Science. Continuum International
Publishing Group

Nowak M (2013) Evolution, Games, and God. Harvard University Press
Nowak MA (2006a) Evolutionary Dynamic: Exploring the Equations of Life.

The Belknap Press of Harvard University
Nowak MA (2006b) Five rules for the evolution of cooperation 314(5805):1560–

1563
Nowak MA, Sasaki A, Taylor C, Fudenberg D (2004) Emergence of cooperation

and evolutionary stability in finite populations. Nature 428(6983):646–650,
DOI 10.1038/nature02414

Nowak MA, Tarnita CE, Wilson EO (2010) The evolution of eusociality. Na-
ture 466:1057–1062

Olson GM, Olson JS (2000) Distance matters. Human-computer interaction
15(2):139–178

Pendharkar PC, Rodger JA (2009) The relationship between soft-
ware development team size and software development cost. Com-
mun ACM 52(1):141–144, DOI 10.1145/1435417.1435449, URL
http://doi.acm.org/10.1145/1435417.1435449

Pereira LM, Santos FC, et al (2012) The emergence of commitments and
cooperation. In: Proceedings of the 11th International Conference on Au-
tonomous Agents and Multiagent Systems-Volume 1, International Founda-
tion for Autonomous Agents and Multiagent Systems, pp 559–566

Pfaff B (2008) Analysis of Integrated and Cointegrated Time Series with R.
Springer

Prikladnicki R, Boden A, Avram G, de Souza CR, Wulf V (2014) Data collec-
tion in global software engineering research: learning from past experience.
Empirical Software Engineering 19(4):822–856

Puranam P, Alexy O, Reitzig M (2014) What’s new about new forms of orga-
nizing? Academy of Management Review 39(2):162–180

Rabin M (1993) Incorporating fairness into game theory and economics. The
American economic review pp 1281–1302

Ren Y, Kraut RE (2014) Agent-based modeling to inform online community
design: Impact of topical breadth, message volume, and discussion modera-
tion on member commitment and contribution. Human-Computer Interac-
tion 29(4):351–389, DOI 10.1080/07370024.2013.828565



Cheap Talk, Cooperation, and Trust in Global Software Engineering 37

Runeson P, Höst M (2009) Guidelines for conducting and reporting case study
research in software engineering. Empirical software engineering 14(2):131–
164

Santos FC, Pacheco JM, Skyrms B (2011) Co-evolution of pre-play signal-
ing and cooperation. Journal of Theoretical Biology 274(1):30 – 35, DOI
10.1016/j.jtbi.2011.01.004

Schniter E, Sheremeta RM, Sznycer D (2013) Building and rebuilding trust
with promises and apologies. Journal of Economic Behavior & Organization
94:242–256, DOI 10.1016/j.jebo.2012.09.011

Schumann J, Shih PC, Redmiles DF, Horton G (2012) Supporting initial trust
in distributed idea generation and idea evaluation. In: Proc. GROUP, pp
199–208

Simon HA (1991) Bounded rationality and organizational learning. Organiza-
tion science 2(1):125–134

Skyrms B (2001) The stag hunt. In: Presendential Address of the Pacific Di-
vision of the APA, Proceedings and Addresses of the APA 75, pp 31–41

Skyrms B (2008) Trust, risk, and the social contract. Synthese 160(1):21–25
Skyrms B (2010) Signals: Evolution, learning, and information. Oxford Uni-

versity Press
Skyrms B (2014) Social dynamics. Oxford University Press
Steed A, Spante M, Heldal I, Axelsson AS, Schroeder R (2003) Strangers

and friends in caves: an exploratory study of collaboration in networked ipt
systems for extended periods of time. In: Proc. I3D, pp 51–54

Storey MA, Singer L, Cleary B, Figueira Filho F, Zagalsky A (2014) The (r)
evolution of social media in software engineering. In: Proceedings of the on
Future of Software Engineering, ACM, pp 100–116

Tamburri DA, Lago P, Vliet Hv (2013) Organizational social structures for
software engineering. ACM Comput Surv 46(1):3:1–35

Traulsen A, Nowak MA, Pacheco JM (2006) Stochastic dynamics of invasion
and fixation. Phys Rev E 74:011,909, DOI 10.1103/PhysRevE.74.011909,
URL http://link.aps.org/doi/10.1103/PhysRevE.74.011909

Wagstrom P (2009) Vertical interaction in open software engineering commu-
nities. PhD thesis, Carnegie Mellon University

Wagstrom P, Herbsleb JD, Carley KM (2010) Communication, team perfor-
mance, and the individual: Bringing technical dependencies. In: Academy
of Management Proceedings, Academy of Management, vol 2010, pp 1–7

Wang Y, Redmiles D (2013) Understanding cheap talk and the emergence of
trust in global software engineering: An evolutionary game theory perspec-
tive. In: Proc. CHASE, pp 149–152

Wang Y, Zhang M (2010) Penalty policies in professional software develop-
ment practice: a multi-method field study. In: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume 2,
ACM, pp 39–47

Winikoff M (2007) Implementing commitment-based interactions. In: Proc.
AAMAS, pp 128:1–8



38 Yi Wang, David Redmiles

Young HP (1998) Individual Strategy and Social Structure: An Evolutionary
Theory of Institutions. Princeton University Press

Zheng J, Veinott E, Bos N, Olson JS, Olson GM (2002) Trust without touch:
Jumpstarting long-distance trust with initial social activities. In: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’02, pp 141–146

A Punishment vs. Compensation

In this paper, we simply assume the punishment to the defector equals the compensation to
the cheap talker. This assumption has been widely adopted in game theory literature, for
it is essentially a redistribution of payoffs between both players (Pereira et al, 2012). The
redistribution-based punishment/compensation mechanism is also adopted in professional
software engineering practices (Wang and Zhang, 2010). In our case, when a cheap talker
meets a defector, the total payoff is (T − g) + (S + g − e) = T + S − e. There is no loss
during the administration of punishment and compensation. In other words, the punish-
ment/compensation process is free of cost. Given that most punishments are spontaneous
and lack any specific administrator, it is a reasonable solution. However, it is not perfect.
It is possible that the punishment/compensation process incurs some cost or even creates
some extra value in forms of psychological payoff (Rabin, 1993) or advance payment of future
benefits.

When punishment does not equal compensation, we can rewrite the game as the follow-
ing form:

C-C C

C-C

C

D

R-e/2 R-e S-e+f

R R S

T-g T P

Fig. 11 Payoff structure when punishment (g) does not equal compensation (f).

We tested whether the main analytical conclusions are still valid when punishment and
compensation are not equal. We performed simulations for different combinations of g and
f . We assume g and f are in (0, 1], and the interval is 0.1. So g and f can be 0.1, 0.2,... 1.
They form 100 combinations. For each combination of g and f , we ran 1000 independent
rounds of simulation. The other parameters were from the numerical example in fig. 5, and
did not change. The grey-scale in each cell of the following diagram indicates the percentage
of simulations that achieve full-cooperation in a specific combination of g and f .

Obviously, cooperation will become prevalent if:

1. Both g and f are comparable to the cost e,
2. Either of g or f is large enough.

This indicates that the validity of the analytical results does not wholly rely on the relative
quantitative relationship between punishment and compensation.

With the new game, we need to re-specify the conditions for transitions from C-C to C,
and D to C-C. First of all, the condition for transitions from C-C to C remains the same
as equation 6, as the payoff structure between C-C and C does not change. For conditions
for transitions from D to C-C, we can rewrite equation 7 as:

R−
e

2
+ 2(S + f − e) > T − g + 2P ⇒ (9)



Cheap Talk, Cooperation, and Trust in Global Software Engineering 39

Fig. 12 Probability of reaching ”all-cooperate” state under different combinations of pun-
ishment and compensation.

g + 2f > T + 2P −R− 2S +
5e

2
(10)

Indeed, the original condition in equation 8 is a special case (g = f) of equation 10.
Equation 10 provides more possibilities for a team to develop trust and cooperation. Equa-
tion 8 requires punishment g and is comparable to the cost of cheap talk. However, equation
10 shows that increasing compensation f may achieve the same outcome. These conditions
are consistent with the above simulation results.

If a team does not want to implement punishment to defect, it may try to increase com-
pensation. However, increasing compensation sometimes requires extra cost from the third
party (who use some external resource to fund the extra compensation). Future research
may focus on this issue. Modeling external compensation is beyond the scope of this paper.

B The Dictionaries Used in Classification

B.1 Lucene

No. Total Keywords = 66.
information retrieval, ranking, index caching, caches, bounded indices, language detect-
ing(detection), token(ize), word break, Kuromoji, schema, encoding scheme, highlighter, dis-
tance measure(s), nightly, bug, issue, compatibility, configuration, JIRA, contention, build
#19, parse(r), test(s), benchmark, trunk, commit, merge policy, error, exception, regenerate,
initialized, branch, intermittent, truncated, subprocess, inter-process, manifest file, real(-
)time, load-sharing, load-balancing, proxy, main memory, concurrent, enumerate, logging,
Java, boolean, comparator, decouple, synchronization, sequentialization, invalid, memory
leak, JFlex, FNFE, parameters, character escaping, concatenation, stacked segments, dis-
crepancy(ies), lexicon, unstored, vector, fuzzy query, collection api, wildcard.

B.2 Chromium OS

No. Total Keywords = 118.

19 The word “build” is not necessary to be a keyword for detecting work-related message,
but “build #” always refers a build failure.



40 Yi Wang, David Redmiles

B.2.1 Reused Keywords

bug, issue, compatibility, configuration, JIRA, contention, build #, parse(r), test(s), bench-
mark, trunk, commit, merge policy, error, exception, regenerate, initialized, branch, inter-
mittent, truncated, subprocess, inter-process, manifest file, real(-)time, load-sharing, load-
balancing, proxy, main memory, concurrent, enumerate, logging, Java, boolean, comparator,
decouple, synchronization, sequentialization, invalid, memory leak, parameters, concatena-
tion, stacked segments, wildcard.

B.2.2 New Keywords

keyboard layout, tree status, gizmo-paladin, boot, firmware, register, kernel, cmdline, native
android, GNU/Linux distro, Valgrind test, vanilla linux, autotest, InitSDK, ChromeSDK,
parallel, merge conflict(s), chroot, sysroot, syslinux, config param, libdevmapper, librpm,
crbug.com, CQ, CL20, git push, patch(es), deprecated, clang, x86-generic, amd64-generic,
module-init, setup board, resynced, driver, partition, mount, hash, SyncChrome, canary(ies),
gpu, symbolizing, prefix, 0x...21, buffer, userspace, device tree, KVM, UI image(s), sim-
plechrome, build image, test image, dependencies, waterfall, code-review, developer(dev)
mode, recovery mode, hard-reset, interpreter, use case(s), modeset, dev(-)server, xserver,
flash image, ARM, libxml, rootfs, tryserver, Ubuntu, IO22.

20 CQ and CL must be capitalized.
21 This refers any word start with “0x” which indicates a hexadecimal number. Most of

them are used to represent a memory address.
22 IO must be a separated word when considering as a keyword.


